高中数学

如图,三棱锥中,⊥底面的中点,的中点,点上,且

(1)求证:⊥平面
(2)求证:∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知正方体是底对角线的交点,求证:

(1)∥面
(2)⊥面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图:已知正六边形边长为1,把四边形沿着向上翻折成一个立体图形

(1)求证:
(2)若时,求二面角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面为平行四边形,底面

(1)证明:平面平面
(2)若二面角,求与平面所成的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=AF=1.

(1)求四棱锥F﹣ABCD的体积VF﹣ABCD
(2)求证:平面AFC⊥平面CBF;
(3)在线段CF上是否存在一点M,使得OM∥平面ADF,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.

(1)求证:B1C//平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将沿DE折起到的位置,使二面角为直二面角,连结(如图2).

(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为60°?若存在,求出PB的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面为矩形,平面的中点.

(1)证明:平面
(2)设,三棱锥的体积,求到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面是正方形,侧棱底面

(1)若的中点.证明:平面
(2)若二面角的余弦值为,试求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面为菱形且中点.

(1)若,求证:平面平面
(2)若,且四棱锥的体积为1,试求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知空间四边形的每条边和对角线长都等于1,点分别是的中点,计算:

(1)
(2)的长;
(3)异面直线所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.

(1)求证:PC⊥AD;
(2)求点D到平面PAM的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱中,为等腰直角三角形,,且.分别为的中点.

(1)求证:; 
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点.

(Ⅰ)若,求证:无论点P在DD1上如何移动,总有BP⊥MN;
(Ⅱ)棱DD1上是否存在这样的点P,使得平面APC1⊥平面A1ACC1?证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1)示,在梯形中,,且,如图(2)沿将四边形折起,使得平面与平面垂直,的中点.

(Ⅰ)求证:
(Ⅱ)求证:
(Ⅲ)求点D到平面BCE的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题