如图,在四棱锥中,底面为菱形且,为中点.(1)若,求证:平面平面;(2)若,且四棱锥的体积为1,试求二面角的大小.
设函数. (I)若曲线与曲线在它们的交点处具有公共切线,求的值; (II)当时,若函数在区间内恰有两个零点,求的取值范围; (III)当时,求函数在区间上的最大值
如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D. (1)求椭圆和双曲线的标准方程; (2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1; (3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
设函数,,,且以为最小正周期. (1)求; (2)求的解析式; (3)已知,求的值.
已知圆C与两坐标轴都相切,圆心C到直线的距离等于. (1)求圆C的方程. (2)若直线与圆C相切,求的最小值.
在锐角△中,、、分别为角、、所对的边,且 (1)确定角的大小; (2)若,且△的面积为,求的值.