(本小题满分12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的部分每小时收2元(不足1小时的部分按1小时计算)。有人独立来该租车点租车骑游。各租一车一次。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。(Ⅰ)求甲、乙两人所付租车费用相同的概率;(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.
如图,在三棱柱中,已知,,,. (1)求证:; (2)设(),且平面与所成的锐二面角的大小为30°,试求的值.
已知数列满足,,. (1)求证:是等差数列; (2)证明:.
已知向量,,. (1)若⊥,求的值; (2)若∥,求的值.
已知数列的前n项和为,设数列满足. (1)若数列为等差数列,且,求数列的通项公式; (2)若,,且数列,都是以2为公比的等比数列,求满足不等式的所有正整数n的集合.
已知函数. (1)当时,求的单调减区间; (2)若方程恰好有一个正根和一个负根,求实数的最大值.