已知函数.(1)当时,求的单调减区间;(2)若方程恰好有一个正根和一个负根,求实数的最大值.
已知函数(Ⅰ)判断函数的奇偶性,并加以证明;(Ⅱ)用定义证明在上是增函数;(Ⅲ)求出函数在的最值.
设集合,,.(Ⅰ)若,求实数的取值范围; (Ⅱ)若,求实数的取值范围.
设,,求:(Ⅰ);(Ⅱ)
(本小题只理科做,满分14分)如图,已知平面,,△是正三角形,,且是的中点.(1)求证:平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的大小.
(本小题文科14分理科13分).某公司今年初用25万元引进一种新的设备,设备投入运行后,每年销售收入为21万元。已知该公司第n年需要付出设备的维修和工人工资等费用的和的信息如下图。(1)求;(2)该公司引进这种设备后,第几年后开始获利、第几年后开始亏损?(3)这种设备使用多少年,该公司的年平均获利最大?()