(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.(1)求异面直线PA与CD所成的角;(2)求证:PC∥平面EBD;(3)求二面角A—BE--D的余弦值.
已知函数(且),. (1)若在定义域上有极值,求实数的取值范围; (2)当时,若对,总,使得,求实数的取值范围;(其中为自然对数的底数) (3)对,且,证明: .
如图所示,、分别为椭圆:的左、右两个焦点,、为两个顶点,已知顶点到、两点的距离之和为. (1)求椭圆的方程; (2)求椭圆上任意一点到右焦点的距离的最小值; (3)作的平行线交椭圆于、两点,求弦长的最大值,并求取最大值时的面积.
(1)已知,记的个位上的数字为,十位上的数字,求的值; (2)求和(结果不必用具体数字表示).
某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为,按交通法规定:这段公路车速限制在(单位:)之间.假设目前油价为(单位:元),汽车的耗油率为(单位:), 其中(单位:)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为元,不考虑其它费用,这次租车的总费用最少是多少?此时的车速是多少?(注:租车总费用=耗油费+司机的工资)
是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?