在平面直角坐标系中,已知圆,圆.(Ⅰ)若过点的直线被圆截得的弦长为,求直线的方程;(Ⅱ)圆是以1为半径,圆心在圆:上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围 ;(Ⅲ)若动圆同时平分圆的周长、圆的周长,如图所示,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
(12分)已知函数在区间[-1,1]上与x轴有且只有一个交点,求:实数的取值范围。
(12分)已知:函数, (1)求:函数f(x)的定义域; (2)判断函数f(x)的奇偶性并说明理由; (3)判断函数f(x)在()上的单调性,并用定义加以证明。
(9分)设函数如果,求的取值范围.
(9分)已知:函数的定义域为,集合, (1)求:集合; (2)若AB,求a的取值范围。
制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?