设,分别是椭圆:的左、右焦点,过斜率为1的直线与相交于、两点,且,,成等差数列,(Ⅰ)求的离心率;(Ⅱ)设点满足,求的方程。
函数 f ( x ) = A sin ( ω x - π 6 ) + 1 ( A > 0 , ω > 0 ) 的最大值为3, 其图像相邻两条对称轴之间的距离为 π 2 , (1)求函数 f ( x ) 的解析式; (2)设 α ∈ ( 0 , π 2 ) ,则 f ( α 2 ) = 2 ,求 α 的值
已知等比数列 a n 的公比为 q = - 1 2 . (1)若 a 3 =,求数列 a n 的前 n 项和; (Ⅱ)证明:对任意 k ∈ N + , a k , a k + 2 , a k + 1 成等差数列.
已知 a 为正实数, n 为自然数,抛物线 y = - x 2 + a n 2 与 x 轴正半轴相交于点 A ,设 f n 为该抛物线在点 A 处的切线在 y 轴上的截距. (1)用 a 和 n 表示 f n ; (2)求对所有 n 都有 f n - 1 f n + 1 ≥ n 3 n 3 + 1 成立的 a 的最小值; (3)当 0 < a < 1 时,比较 ∑ k = 1 n 1 f k - f 2 k 与 27 4 · f 1 - f n f 0 - f 1 的大小,并说明理由.
如图,动点 M 到两定点 A ( - 1 , 0 ) 、 B ( 2 , 0 ) 构成 △ M A B ,且 ∠ M B A = 2 ∠ M A B ,设动点 M 的轨迹为 C .
(Ⅰ)求轨迹 C 的方程; (Ⅱ)设直线 y = - 2 x + m 与 y 轴交于点 P ,与轨迹 C 相交于点 Q 、 R ,且 P Q < P R ,求 P R P Q 的取值范围。
已知数列 a n 的前 n 项和为 S n ,且 a 2 a n = S 2 + S n 对一切正整数 n 都成立。 (Ⅰ)求 a 1 , a 2 的值; (Ⅱ)设 a 1 > 0 ,数列 l g 10 a 1 a n 的前 n 项和为 T n ,当 n 为何值时, T n 最大?并求出 T n 的最大值.