高中数学

如图,在三棱锥中,,点分别为 的中点.

(1)求证:直线平面
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱中,分别为中点,.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直四棱柱ABCD﹣A1B1C1D1中, E,F分别是AB,BC的中点,A1C1与B1D1交于点O.

(1)求证:A1,C1,F,E四点共面;
(2)若底面ABCD是菱形,且A1E,求证:平面A1C1FE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知二面角的大小为,菱形在面内,两点在棱上,的中点,,垂足为

(1)证明:平面
(2)求异面直线所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱中,侧棱垂直底面,是棱的中点.

(1)证明:平面⊥平面
(2)平面分此棱柱为两部分,求这两部分体积的比.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,平面平面,且.

(Ⅰ)求证:平面
(Ⅱ)求直线和平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,分别为的中点;

(1)求证: ;
(2)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:平面;
(2)过点E作截面平面,分别交CB于F,于H,求截面的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点的中点,点是边上的任意一点.

(1)求证:
(2)求二面角的平面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正三棱柱的所有棱长都为2,中点。

(1)求证:
(2)求二面角的余弦值;
(3)求点到平面的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知菱形ACSB中,∠ABS=60°.沿着对角线SA将菱形ACSB折成三棱锥S﹣ABC,且在三棱锥S﹣ABC中,∠BAC=90°,O为BC中点.

(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求平面ASC与平面SCB夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在梯形ABCD中,AD∥BC,BC=2AD,AD=AB=,AB⊥BC,如图把△ABD沿BD翻折,使得平面ABD⊥平面BCD.

(Ⅰ)求证:CD⊥平面ABD;
(Ⅱ)若点M为线段BC中点,求点M到平面ACD的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点.

(1)求证:BC∥平面EFG;
(2)DH⊥平面AEG.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△RBC中,RB=BC=2,点A、D分别是RB、RC的中点,且2BD=RC,边AD折起到△PAD位置,使PA⊥AB,连结PB、PC.

(1)求证:BC⊥PB;
(2)求二面角A﹣CD﹣P的平面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题