已知函数 满足下列关系式:(i)对于任意的 ,恒有 ;(ii) .
求证:
(1)
=0;
(2)
为奇函数;
(3)
是以
为周期的周期函数.
已知
是定义在
上的奇函数,且
,若
,
时,有
成立.
(1)判断
在
上的单调性,并证明;
(2)解不等式:
;
(3)若当
时,
对所有的
恒成立,求实数m的取值范围.
已知函数f(x)=
(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
(1)求a,b,c的值.
(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.
(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.
已知函数f(x)=x3+x.
(1)判断函数f(x)的单调性与奇偶性,(不用证明结论).
(2)若f(cosθ﹣m)+f(msinθ﹣2)<0对θ∈R恒成立,求实数m的取值范围.
已知函数
(
为自然对数的底数)
(Ⅰ)若函数
有三个极值点,求
的取值范围
(Ⅱ)若存在实数
,使对任意的
,不等式
恒成立,求正整数
的最大值.
已知函数
的定义域为
.
(Ⅰ)若
,求实数
的值;
(Ⅱ)若
的最小值为5,求实数
的值;
(Ⅲ)是否存在实数
,使得
恒成立?若存在求出
的值,若不存在请说明理由.
设二次函数
.
(1)当
时,求函数
在
上的最小值
的表达式;
(2)若方程
有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数
,使得
.
设函数
,
,
为常数.
(1)用
表示
的最小值,求
的解析式;
(2)在(1)中,是否存在最小的整数
,使得
对于任意
均成立,若存在,求出
的
值;若不存在,请说明理由.