设函数,,为常数.(1)用表示的最小值,求的解析式;(2)在(1)中,是否存在最小的整数,使得对于任意均成立,若存在,求出的值;若不存在,请说明理由.
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点. (1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值..
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点. (1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=. (1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-E的正弦值.
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sin θ,ρcos=2.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求a,b的值.