高中数学

已知数列是公差不为0的等差数列,a1=2且a2,a3,a4+1成等比数列。
(1)求数列的通项公式;
(2)设,求数列的前项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆C:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C交于两点A和B,设P为椭圆上一点,且满足·(O为坐标原点),当 时,求实数t取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。

(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列的前项和为.
(1)求数列的通项公式;
(2)设log2an+1 ,求数列的前项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.给出下列命题:
① 已知线性回归方程,当变量增加2个单位,其预报值平均增加4个单位;
② 在进制计算中, ;
③ 若,且,则
④ “”是“函数的最小正周期为4”的充要条件;
⑤ 设函数的最大值为M,最小值为m,则M+m=4027,其中正确命题的个数是     个。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,若,且.
(1)求动点的轨迹的方程;
(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,椭圆经过点,离心率,直线的方程为.

(1)求椭圆的方程;
(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦为坐标原点,若则动点的轨迹为圆;③设的一内角,且,则表示焦点在轴上的双曲线;④已知两定点和一动点,若,则点的轨迹关于原点对称.
其中真命题的序号为               (写出所有真命题的序号).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知点,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,则(    )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知中心在原点的双曲线的右焦点为,实轴长.
(1)求双曲线的方程
(2)若直线与双曲线恒有两个不同的交点,且为锐角(其中为原点),求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)焦点在轴上的双曲线渐近线方程为
(2)点到双曲线上动点的距离最小值为

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦为坐标原点,若则动点的轨迹为圆;③,则双曲线的离心率相同;④已知两定点和一动点,若,则点的轨迹关于原点对称.
其中真命题的序号为               (写出所有真命题的序号).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知点,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,则(    )

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为常数),在时取得极值.
(1)求实数的值;
(2)当时,求函数的最小值;
(3)当时,试比较的大小并证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知是椭圆的两个焦点,为坐标原点,点在椭圆上,且,⊙是以为直径的圆,直线与⊙相切,并且与椭圆交于不同的两点

(1)求椭圆的标准方程;
(2)当,且满足时,求弦长的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学试题