在平面直角坐标系中,若,且.(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.
某企业主要生产甲、乙两种品牌的空调,由于受到空调在保修期内维修费等因素的影响,企业生产每台空调的利润与该空调首次出现故障的时间有关,甲、乙两种品牌空调的保修期均为3年,现从该厂已售出的两种品牌空调中各随机抽取50台,统计数据如下:
将频率视为概率,解答下列问题: (1)从该厂生产的甲品牌空调中随机抽取一台,求首次出现故障发生在保修期内的概率; (2)若该厂生产的空调均能售出,记生产一台甲品牌空调的利润为X1,生产一台乙品牌空调的利润为X2,分别求X1,X2的分布列; (3)该厂预计今后这两种品牌空调销量相当,但由于资金限制,只能生产其中一种品牌空调,若从经济效益的角度考虑,你认为应该生产哪种品牌的空调?说明理由。
已知函数,其中。 (1)若,求函数的极值点和极值; (2)求函数在区间上的最小值。
已知数列中,,其中。 (1)计算的值; (2)根据计算结果猜想的通项公式,并用数学归纳法加以证明。
已知数列满足: (1)若数列是以常数为首项,公差也为的等差数列,求的值; (2)若,求证:对任意都成立; (3)若,求证:对任意都成立;
已知圆M:,直线,上一点A的横坐标为,过点A作圆M的两条切线,,切点分别为B,C. (1)当时,求直线,的方程; (2)当直线,互相垂直时,求的值; (3)是否存在点A,使得?若存在,求出点A的坐标,若不存在,请说明理由.