如图,在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点。(1)当M在什么位置时,,请给出证明;(2)若直线MN与平面ABN所成角的大小为,求的最大值。
(本小题满分12分) 设椭圆的离心率,右焦点到直线的距离为坐标原点. (Ⅰ)求椭圆的方程; (II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.
(本小题满分12分) 已知等腰直角三角形,其中∠=90º,.点、分别是、的中点,现将△沿着边折起到△位置,使⊥,连结、. (Ⅰ)求证:⊥; (Ⅱ)求二面角的余弦值.
(本小题满分12分) 某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示. (Ⅰ)求甲、乙两名运动员得分的中位数; (Ⅱ)你认为哪位运动员的成绩更稳定? (Ⅲ)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.
(本小题满分12分) 已知函数的最小正周期为.(Ⅰ)求; (Ⅱ)当时,求函数的值域.
函数的定义域为(0,1](为实数). ⑴当时,求函数的值域; ⑵若函数在定义域上是减函数,求的取值范围; ⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时的值.