已知中心在原点的双曲线的右焦点为,实轴长.(1)求双曲线的方程(2)若直线与双曲线恒有两个不同的交点,且为锐角(其中为原点),求的取值范围.
知抛物线C:y2=4x,若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
已知P、Q是椭圆C:上的两个动点,是椭圆上一定点,是其左焦点,且|PF|、|MF|、|QF|成等差数列。 求证:线段PQ的垂直平分线经过一个定点A;
已知点和,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线交于D、E两点,求线段DE的长.
已知椭圆与直线相交于两点. (1)当椭圆的半焦距,且成等差数列时,求椭圆的方程; (2)在(1)的条件下,求弦的长度;
已知点A、B的坐标分别是,.直线相交于点M,且它们的斜率之积为-2. (Ⅰ)求动点M的轨迹方程; (Ⅱ)若过点的直线交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线的方程.