(本小题满分12分)两个代表队进行乒乓球对抗赛,每队三名队员,队队员是 ,队队员是,按以往多次比赛的统计,对阵队员之间的胜负概率如下:
现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为.(1)求的概率分布列;(2)求,.
(本小题满分12分) 如图,四棱锥的底面为菱形,平面,,分别为的中点,. (Ⅰ)求证:平面平面. (Ⅱ)求平面与平面所成的锐二面角的余弦值.
(本小题满分12分) 为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图. (Ⅰ)求这组数据的众数和中位数(精确到0.1); ( II )根据有关规定,成绩小于16秒为达标. (ⅰ)用样本估计总体,某班有学生45人,设为达标人数,求的数学期望与方差. (ⅱ)如果男女生使用相同的达标标准,则男女 生达标情况如下表
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
(本小题满分12分) 在数列,中已知, (Ⅰ)求证:数列是等比数列; (Ⅱ)若,求数列,的通项公式.
. 已知函数, (Ⅰ)若在上存在最大值与最小值,且其最大值与最小值的和为,试求和的值。 (Ⅱ)若为奇函数: (1)是否存在实数,使得在为增函数,为减函数,若存在,求出的值,若不存在,请说明理由; (2)如果当时,都有恒成立,试求的取值范围.
已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点 (1)求椭圆C的方程; (2)求三角形MNT的面积的最大值