(本小题满分12分)两个代表队进行乒乓球对抗赛,每队三名队员,队队员是 ,队队员是,按以往多次比赛的统计,对阵队员之间的胜负概率如下:
现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为.(1)求的概率分布列;(2)求,.
已知命题曲线与轴相交于不同的两点;命题表示焦点在轴上的椭圆.若“且”是假命题,“或”是真命题,求的取值范围.
已知,若是的必要非充分条件,求实数的取值范围.
(1)焦点在轴上的椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程;(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
已知函数是偶函数.(Ⅰ)求的值;(Ⅱ)设,若函数与的图象有且只有一个公共点,求实数的取值范围.
已知二次函数满足,且.(Ⅰ)求的解析式;(Ⅱ)若时,恒成立,求实数的取值集合.