高中数学

直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果AB=8,求直线l的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点,

M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)当PQ=2时,求直线l的方程;
(3)探索·是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知直线l1、l2分别与抛物线x2=4y相切于点A、B,且A、B两点的横坐标分别为a、b(a、b∈R).
(1)求直线l1、l2的方程;
(2)若l1、l2与x轴分别交于P、Q,且l1、l2交于点R,经过P、Q、R三点作圆C.
①当a=4,b=-2时,求圆C的方程;
②当a,b变化时,圆C是否过定点?若是,求出所有定点坐标;若不是,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)圆C是否经过定点(与b的取值无关)?证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知△ABC的两个顶点A(-1,5)和B(0,-1),又知∠C的平分线所在的直线方程为2x-3y+6=0,求三角形各边所在直线的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,.
 
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,已知三棱柱ABCA1B1C1,

(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一个多面体的直观图和三视图如图所示,其中M,N分别是AB,AC的中点,G是DF上的一动点.

(1)求该多面体的体积与表面积;
(2)求证:GN⊥AC;
(3)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为
A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在四棱锥PABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分别为PB、PD的中点.

(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角AMNQ的平面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学试题