已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.
为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各9件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图,但是乙厂记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示,规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.(Ⅰ)若甲、乙两厂产品中该种元素含量的平均值相同,求的值;(Ⅱ)求乙厂该种元素含量的平均值超过甲厂平均值的概率;(Ⅲ)当时,利用简单随机抽样的方法,分别在甲、乙两厂该种元素含量超过(毫克)的数据中个抽取一个做代表,设抽取的两个数据中超过(毫克)的个数为,求的分布列和数学期望.
已知三个内角的对边分别为,的图象与直线相切,且切点横坐标依次成公差为的等差数列,点是函数的一个对称中心.(Ⅰ)求的大小;(Ⅱ)已知,为的面积,求的最大值及此时B的值.
(本小题满分13分)已知函数(),其中自然对数的底数。(1)若函数图象在处的切线方程为,求的值;(2)求函数的单调区间;(3)设函数,当时,存在使得成立,求的取值范围.
已知数列为等差数列,且,数列的前项和为,且(Ⅰ)求数列,的通项公式; (Ⅱ)若,求数列的前项和.
(本小题满分12分)对某社区青年志愿者参加社区服务次数统计,随机抽去了名志愿者作为样本,得到这名志愿者参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:
(Ⅰ)求出表中的值;(Ⅱ)在所取样本中,从参加社区服务的次数不少于次的志愿者中任选人,求至少一人参加社区服务次数在区间内的概率.