已知是椭圆的两个焦点,为坐标原点,点在椭圆上,且,⊙是以为直径的圆,直线:与⊙相切,并且与椭圆交于不同的两点(1)求椭圆的标准方程;(2)当,且满足时,求弦长的取值范围.
如图,三棱柱中,侧棱,且侧棱和底面边长均为2,是的中点 (1)求证:; (2)求证:; (3)求三棱锥的体积
已知圆与轴相切,圆心在射线上,直线被圆截得的弦长为2 (1)求圆标准方程; (2)已知点,经过点直线与圆相切于点,求的值.
如图,正方体中,与异面直线都垂直相交. 求证:
求斜率为,且与两坐标轴所围成的三角形的周长是12的直线方程.
圆柱内有一个直四棱柱,直四棱柱底面是圆柱底面的内接正方形.已知圆柱表面积为6,且底面圆直径与母线长相等,求此四棱柱的体积.