某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
如图,为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A、B;找到一个点D,从D点可以观察到点A、C:找到一个点E,从E点可以观察到点B、C。并测得以下数据:CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B两 点之间的距离。
已知函数f(x)=|x+1|+|x﹣2|﹣m (I)当时,求f(x) >0的解集; (II)若关于的不等式f(x) ≥2的解集是,求的取值范围
已知直线C1:,(t为参数),圆C2: (θ为参数). (I)当α=时,求C1与C2的交点的直角坐标; (II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
如图,直线经过⊙上的点,并且⊙交直线于,,连接. (I)求证:直线是⊙的切线; (II)若⊙的半径为,求的长.
已知函数 (Ⅰ)当a=﹣2时,求函数f(x)的单调区间; (Ⅱ)若g(x)= +在1,+∞)上是单调函数,求实数a的取值范围.