(本小题满分10分)选修4—1:几何证明选讲如图所示,已知AB是圆的直径,AC是弦,,垂足为D,AC平分(Ⅰ)求证:直线CE是圆的切线;(Ⅱ)求证:
如图,在正三棱柱中, 为的中点。(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值
如图,在四棱锥中,底面为正方形,侧棱底面,,点为的中点。(Ⅰ)求证:平面;(Ⅱ)求点到平面的距离。
已知圆C的圆心在直线上且在第一象限,圆C与相切, 且被直线截得的弦长为.(1)求圆C的方程;(2)若是圆C上的点,满足恒成立,求的范围.
如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点.求证:(1)PA∥平面BDE;(2)平面PAC平面BDE
已知,O为原点.(1)求过点O的且与圆相切的直线的方程;(2)若P是圆C上的一动点,M是OP的中点,求点M的轨迹方程