初中数学

(操作发现)

如图①,在边长为1个单位长度的小正方形组成的网格中, ΔABC 的三个顶点均在格点上.

(1)请按要求画图:将 ΔABC 绕点 A 按顺时针方向旋转 90 ° ,点 B 的对应点为 B ' ,点 C 的对应点为 C ' ,连接 BB '

(2)在(1)所画图形中, AB ' B =        

(问题解决)

如图②,在等边三角形 ABC 中, AC = 7 ,点 P ΔABC 内,且 APC = 90 ° BPC = 120 ° ,求 ΔAPC 的面积.

小明同学通过观察、分析、思考,对上述问题形成了如下想法:

想法一:将 ΔAPC 绕点 A 按顺时针方向旋转 60 ° ,得到△ AP ' B ,连接 PP ' ,寻找 PA PB PC 三条线段之间的数量关系;

想法二:将 ΔAPB 绕点 A 按逆时针方向旋转 60 ° ,得到△ AP ' C ' ,连接 PP ' ,寻找 PA PB PC 三条线段之间的数量关系.

请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)

(灵活运用)

如图③,在四边形 ABCD 中, AE BC ,垂足为 E BAE = ADC BE = CE = 2 CD = 5 AD = kAB ( k 为常数),求 BD 的长(用含 k 的式子表示).

来源:2017年江苏省淮安市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为2,点 E F 分别在边 AD CD 上,若 EBF = 45 ° ,则 ΔEDF 的周长等于          

来源:2016年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, C = 90 ° ABC = 30 ° AC = 2 ΔABC 绕点 C 顺时针旋转得△ A 1 B 1 C ,当 A 1 落在 AB 边上时,连接 B 1 B ,取 B B 1 的中点 D ,连接 A 1 D ,则 A 1 D 的长度是 (    )

A. 7 B. 2 2 C.3D. 2 3

来源:2016年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知 ΔABC 是等腰直角三角形, AC = BC = 2 D 是边 AB 上一动点 ( A B 两点除外),将 ΔCAD 绕点 C 按逆时针方向旋转角 α 得到 ΔCEF ,其中点 E 是点 A 的对应点,点 F 是点 D 的对应点.

(1)如图1,当 α = 90 ° 时, G 是边 AB 上一点,且 BG = AD ,连接 GF .求证: GF / / AC

(2)如图2,当 90 ° α 180 ° 时, AE DF 相交于点 M

①当点 M 与点 C D 不重合时,连接 CM ,求 CMD 的度数;

②设 D 为边 AB 的中点,当 α 90 ° 变化到 180 ° 时,求点 M 运动的路径长.

来源:2016年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, BD 为正方形 ABCD 的对角线, BE 平分 DBC ,交 DC 与点 E ,将 ΔBCE 绕点 C 顺时针旋转 90 ° 得到 ΔDCF ,若 CE = 1 cm ,则 BF =        cm

来源:2016年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.

图形的变化

示例图形

与对应线段有关的结论

与对应点有关的结论

平移

(1) 

AA ' = BB '

AA ' / / BB '

轴对称

(2)  

(3)  

旋转

AB = A ' B ' ;对应线段 AB A ' B ' 所在的直线相交所成的角与旋转角相等或互补.

(4)  

来源:2016年江苏省南京市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

问题背景:

如图①,在四边形 ADBC 中, ACB = ADB = 90 ° AD = BD ,探究线段 AC BC CD 之间的数量关系.

小吴同学探究此问题的思路是:将 ΔBCD 绕点 D ,逆时针旋转 90 ° ΔAED 处,点 B C 分别落在点 A E 处(如图② ) ,易证点 C A E 在同一条直线上,并且 ΔCDE 是等腰直角三角形,所以 CE = 2 CD ,从而得出结论: AC + BC = 2 CD

简单应用:

(1)在图①中,若 AC = 2 BC = 2 2 ,则 CD =   

(2)如图③, AB O 的直径,点 C D 上, AD ̂ = BD ̂ ,若 AB = 13 BC = 12 ,求 CD 的长.

拓展规律:

(3)如图④, ACB = ADB = 90 ° AD = BD ,若 AC = m BC = n ( m < n ) ,求 CD 的长(用含 m n 的代数式表示)

(4)如图⑤, ACB = 90 ° AC = BC ,点 P AB 的中点,若点 E 满足 AE = 1 3 AC CE = CA ,点 Q AE 的中点,则线段 PQ AC 的数量关系是  

来源:2016年江苏省淮安市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

思维启迪:

(1)如图1, A B 两点分别位于一个池塘的两端,小亮想用绳子测量 A B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达 B 点的点 C ,连接 BC ,取 BC 的中点 P (点 P 可以直接到达 A 点),利用工具过点 C CD / / AB AP 的延长线于点 D ,此时测得 CD = 200 米,那么 A B 间的距离是 200 米.

思维探索:

(2)在 ΔABC ΔADE 中, AC = BC AE = DE ,且 AE < AC ACB = AED = 90 ° ,将 ΔADE 绕点 A 顺时针方向旋转,把点 E AC 边上时 ΔADE 的位置作为起始位置(此时点 B 和点 D 位于 AC 的两侧),设旋转角为 α ,连接 BD ,点 P 是线段 BD 的中点,连接 PC PE

①如图2,当 ΔADE 在起始位置时,猜想: PC PE 的数量关系和位置关系分别是  

②如图3,当 α = 90 ° 时,点 D 落在 AB 边上,请判断 PC PE 的数量关系和位置关系,并证明你的结论;

③当 α = 150 ° 时,若 BC = 3 DE = 1 ,请直接写出 P C 2 的值.

来源:2019年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1, ΔABC ( 1 2 AC < BC < AC ) 绕点 C 顺时针旋转得 ΔDEC ,射线 AB 交射线 DE 于点 F

(1) AFD BCE 的关系是  

(2)如图2,当旋转角为 60 ° 时,点 D ,点 B 与线段 AC 的中点 O 恰好在同一直线上,延长 DO 至点 G ,使 OG = OD ,连接 GC

AFD GCD 的关系是  ,请说明理由;

②如图3,连接 AE BE ,若 ACB = 45 ° CE = 4 ,求线段 AE 的长度.

来源:2019年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,将 ΔABC 绕点 A 逆时针旋转 60 ° ,得到 ΔADE .若 AB = 2 ACB = 30 ° ,则线段 CD 的长度为  

来源:2019年辽宁省阜新市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在正方形 ABCD 的边 CD BC 上,且 DE = CF ,点 P 在射线 BC 上(点 P 不与点 F 重合).将线段 EP 绕点 E 顺时针旋转 90 ° 得到线段 EG ,过点 E GD 的垂线 QH ,垂足为点 H ,交射线 BC 于点 Q

(1)如图1,若点 E CD 的中点,点 P 在线段 BF 上,线段 BP QC EC 的数量关系为  

(2)如图2,若点 E 不是 CD 的中点,点 P 在线段 BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.

(3)正方形 ABCD 的边长为6, AB = 3 DE QC = 1 ,请直接写出线段 BP 的长.

来源:2019年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形,连接 AC ,将 ΔABC 绕点 A 逆时针旋转 α ΔAEF ,连接 CF O CF 的中点,连接 OE OD

(1)如图1,当 α = 45 ° 时,请直接写出 OE OD 的关系(不用证明).

(2)如图2,当 45 ° < α < 90 ° 时,(1)中的结论是否成立?请说明理由.

(3)当 α = 360 ° 时,若 AB = 4 2 ,请直接写出点 O 经过的路径长.

来源:2019年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, BCA = 90 ° A < ABC D AC 边上一点,且 DA = DB O AB 的中点, CE ΔBCD 的中线.

(1)如图 a ,连接 OC ,请直接写出 OCE OAC 的数量关系:    

(2)点 M 是射线 EC 上的一个动点,将射线 OM 绕点 O 逆时针旋转得射线 ON ,使 MON = ADB ON 与射线 CA 交于点 N

①如图 b ,猜想并证明线段 OM 和线段 ON 之间的数量关系;

②若 BAC = 30 ° BC = m ,当 AON = 15 ° 时,请直接写出线段 ME 的长度(用含 m 的代数式表示).

来源:2019年辽宁省本溪市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC BAC = 100 ° ,在同一平面内,将 ΔABC 绕点 A 顺时针旋转到△ A B 1 C 1 的位置,连接 B B 1 ,若 B B 1 / / A C 1 ,则 CA C 1 的度数是 (    )

A. 10 ° B. 20 ° C. 30 ° D. 40 °

来源:2018年辽宁省营口市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔCDE 是等边三角形,连接 AD ,取 AD 的中点 P ,连接 BP 并延长至点 M ,使 PM = BP ,连接 AM EM AE ,将 ΔCDE 绕点 C 顺时针旋转.

(1)如图1,当点 D BC 上,点 E AC 上时,则 ΔAEM 的形状为  

(2)将 ΔCDE 绕点 C 顺时针旋转至图2的位置,请判断 ΔAEM 的形状,并说明理由;

(3)若 CD = 1 2 BC ,将 ΔCDE 由图1位置绕点 C 顺时针旋转 α ( 0 ° α < 360 ° ) ,当 ME = 3 CD 时,请直接写出 α 的值.

来源:2018年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

初中数学旋转的性质试题