我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
图形的变化
示例图形
与对应线段有关的结论
与对应点有关的结论
平移
(1)
AA ' = BB '
AA ' / / BB '
轴对称
(2)
(3)
旋转
AB = A ' B ' ;对应线段 AB 和 A ' B ' 所在的直线相交所成的角与旋转角相等或互补.
(4)
已知∠MAN=135°,正方形ABCD绕点A旋转. (1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN. ①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是; ②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由; (2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.
随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式: 设每月上网学习时间为x小时,方案A,B的收费金额分别为,. (1)如图是与x之间函数关系的图象,请根据图象填空:m=;n=; (2)写出与x之间的函数关系式. (3)选择哪种方式上网学习合算,为什么?
如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB. (1)求证:PB是⊙O的切线; (2)当OB=3,PA=6时,求MB,MC的长.
如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C. (1)求反比例函数的解析式; (2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.
已知关于x的一元二次方程. (1)若方程有实数根,求实数m的取值范围; (2)若方程两实数根为,,且满足,求实数的值.