如图,在等边△ABC中,已知点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F。(1)求证:AD=CE (2)求∠DFC的度数。
如图,在中,于G, ED∥BC, ∠1与∠2相等吗?试说明理由。
如图所示,∠2-∠1=30°,∠AOB=3∠1,请求出∠AOB的度数.
(1). (2).(3).(4). (5).
如图所示,已知在直角梯形中,轴于点.动点从点出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直线,垂足为.设点移动的时间为秒(),与直角梯形重叠部分的面积为.(1)求经过三点的抛物线解析式;(2)将绕着点顺时针旋转,是否存在,使得的顶点或在抛物线上?若存在,直接写出的值;若不存在,请说明理由.(3)求与的函数关系式.
如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求直线的解析式.(2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.(3)设从出发起,运动了秒.当,两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.