已知抛物线: 与 轴交点为 , 在 的左侧),顶点为 .
(1)求点 , 的坐标及抛物线的对称轴;
(2)若直线 与抛物线交于点 , ,且 , 关于原点对称,求抛物线的解析式;
(3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点 在直线 上,设直线 与 轴的交点为 ,原抛物线上的点 平移后的对应点为点 ,若 ,求点 , 的坐标.
在平面直角坐标系 中,已知抛物线: 交 轴于 , 两点,与 轴交于点 .
(1)求抛物线的函数解析式;
(2)如图1,点 为第四象限抛物线上一点,连接 ,过点 作 ,垂足为 ,若 ,求点 的
坐标;
(3)如图2,点 为第四象限抛物线上一动点,连接 ,交 于点 ,连接 ,记 的面积为 , 的面积为 ,求 的最大值.
如图,抛物线 与 轴交于 、 两点,且 ,对称轴为直线 .
(1)求该抛物线的函数达式;
(2)直线 过点 且在第一象限与抛物线交于点 .当 时,求点 的坐标;
(3)点 在抛物线上与点 关于对称轴对称,点 是抛物线上一动点,令 , ,当 , 时,求 面积的最大值(可含 表示).
如图,已知抛物线 与 轴相交于 , 两点,与 轴相交于点 ,对称轴是直线 ,连接 .
(1)求该抛物线的表达式;
(2)若过点 的直线 与抛物线相交于另一点 ,当 时,求直线 的表达式;
(3)在(2)的条件下,当点 在 轴下方时,连接 ,此时在 轴左侧的抛物线上存在点 ,使 .请直接出所有符合条件的点 的坐标.
已知二次函数 的图象过点 ,且对任意实数 ,都有 .
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与 轴的正半轴交点为 ,与 轴交点为 ;点 是(1)中二次函数图象上的动点.问在 轴上是否存在点 ,使得以 、 、 、 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点 的坐标;若不存在,请说明理由.
设 为坐标原点,点 、 为抛物线 上的两个动点,且 .连接点 、 ,过 作 于点 ,则点 到 轴距离的最大值
A. |
|
B. |
|
C. |
|
D. |
1 |
如图,在平面直角坐标系中,抛物线 与坐标轴交于 , 两点,直线 交 轴于点 .点 为直线 下方抛物线上一动点,过点 作 轴的垂线,垂足为 , 分别交直线 , 于点 , .
(1)求抛物线 的表达式;
(2)当 时,连接 ,求 的面积;
(3)① 是 轴上一点,当四边形 是矩形时,求点 的坐标;
②在①的条件下,第一象限有一动点 ,满足 ,求 周长的最小值.
二次函数 的图象过 , , , 四个点,下列说法一定正确的是
A. |
若 ,则 |
B. |
若 ,则 |
C. |
若 ,则 |
D. |
若 ,则 |
在平面直角坐标系 中,点 和点 在抛物线 上.
(1)若 , ,求该抛物线的对称轴;
(2)已知点 , , 在该抛物线上.若 ,比较 , , 的大小,并说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于点 ,与x轴交于 两点(点 在点 的左侧),且 点坐标为 ,直线 的解析式为 .
(1)求抛物线的解析式;
(2)过点 作 ,交抛物线于点D,点E为直线 上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线 向左平移 个单位,已知点 为抛物线 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 的面积最大时,是否存在以 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
如图(1),在平面直角坐标系中,抛物线 与y轴交于点A,与x轴交于点 ,且经过点B(8,4),连接AB,BO,作 于点M,将 沿y轴翻折,点M的对应点为点N.解答下列问题:
(1)抛物线的解析式为 ,顶点坐标为 ;
(2)判断点N是否在直线AC上,并说明理由;
(3)如图(2),将图(1)中 沿着OB平移后,得到 .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 的面积.
如图,二次函数 的图象过点 , ,交y轴于点 .直线BO与抛物线相交于另一点D,连接 ,点E是线段AB上的一动点,过点E作 交AD于点F.
(1)求二次函数 的表达式;
(2)判断 的形状,并说明理由;
(3)在点E的运动过程中,直线 上存在一点G,使得四边形AFGE为矩形,请判断此时 的数量关系,并求出点E的坐标;
(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得 的点,在抛物线的对称轴上,是否存在点Q,使得 是以 为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.
如图,在直角坐标系中,四边形 是平行四边形,经过 , , 三点的抛物线 与 轴的另一个交点为 ,其顶点为 ,对称轴与 轴交于点 .
(1)求这条抛物线对应的函数表达式;
(2)已知 是抛物线上的点,使得 的面积是 的面积的 ,求点 的坐标;
(3)已知 是抛物线对称轴上的点,满足在直线 上存在唯一的点 ,使得 ,求点 的坐标.