如图,在平面直角坐标系中,抛物线 y = 1 2 x 2 + bx + c 与坐标轴交于 A ( 0 , - 2 ) , B ( 4 , 0 ) 两点,直线 BC : y = - 2 x + 8 交 y 轴于点 C .点 D 为直线 AB 下方抛物线上一动点,过点 D 作 x 轴的垂线,垂足为 G , DG 分别交直线 BC , AB 于点 E , F .
(1)求抛物线 y = 1 2 x 2 + bx + c 的表达式;
(2)当 GF = 1 2 时,连接 BD ,求 ΔBDF 的面积;
(3)① H 是 y 轴上一点,当四边形 BEHF 是矩形时,求点 H 的坐标;
②在①的条件下,第一象限有一动点 P ,满足 PH = PC + 2 ,求 ΔPHB 周长的最小值.
如图,抛物线与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题. (1)填空:点C的坐标为( ,),点D的坐标为( ,); (2)设点P的坐标为(a,0),当最大时,求a的值并在图中标出点P的位置; (3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?
在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
阅读理解 抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题. 问题解决 如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点. (1)写出点C的坐标,并说明∠ECF=90°; (2)在△PEF中,M为EF中点,P为动点. ①求证:PE2+PF2=2(PM2+EM2); ②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.
在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE. 特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明). 问题探究:把图1中的△AEF绕着点A顺时针旋转. (1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由; (2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)