如图,抛物线 与 轴交于点 、 ,与 轴交于点 ,已知 .
(1)求 的值和直线 对应的函数表达式;
(2) 为抛物线上一点,若 ,请直接写出点 的坐标;
(3) 为抛物线上一点,若 ,求点 的坐标.
如图,在平面直角坐标系 中,正比例函数 和二次函数 的图象都经过点 和点 ,过点 作 的垂线交 轴于点 . 是线段 上一点(点 与点 、 、 不重合), 是射线 上一点,且 ,连接 ,过点 作 轴的垂线交抛物线于点 ,以 、 为邻边作 .
(1)填空: , ;
(2)设点 的横坐标是 ,连接 .若 ,求 的值;
(3)过点 作 的垂线交线段 于点 若 ,求 的长.
如图,在平面直角坐标系中,二次函数 的图象经过点 ,点 .
(1)求此二次函数的解析式;
(2)当 时,求二次函数 的最大值和最小值;
(3)点 为此函数图象上任意一点,其横坐标为 ,过点 作 轴,点 的横坐标为 .已知点 与点 不重合,且线段 的长度随 的增大而减小.
①求 的取值范围;
②当 时,直接写出线段 与二次函数 的图象交点个数及对应的 的取值范围.
在平面直角坐标系中,抛物线 为常数)的顶点为 .
(1)当 时,点 的坐标是 ,抛物线与 轴交点的坐标是 ;
(2)若点 在第一象限,且 ,求此抛物线所对应的二次函数的表达式,并写出函数值 随 的增大而减小时 的取值范围;
(3)当 时,若函数 的最小值为3,求 的值;
(4)分别过点 、 作 轴的垂线,交抛物线的对称轴于点 、 .当抛物线 与四边形 的边有两个交点时,将这两个交点分别记为点 、点 ,且点 的纵坐标大于点 的纵坐标.若点 到 轴的距离与点 到 轴的距离相等,直接写出 的值.
如图,在平面直角坐标系中,点 在抛物线 上,过点 作 轴的垂线,交抛物线于另一点 ,点 、 在线段 上,分别过点 、 作 轴的垂线交抛物线于 、 两点.当四边形 为正方形时,线段 的长为 .
已知二次函数 .
(1)若 , ,求方程 的根的判别式的值;
(2)如图所示,该二次函数的图象与 轴交于点 , 、 , ,且 ,与 轴的负半轴交于点 ,点 在线段 上,连接 、 ,满足 , .
①求证: ;
②连接 ,过点 作 于点 ,点 在 轴的负半轴上,连接 ,且 ,求 的值.
我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于 轴对称,则把该函数称之为“ 函数”,其图象上关于 轴对称的不同两点叫做一对“ 点”.根据该约定,完成下列各题.
(1)若点 与点 是关于 的“ 函数” 的图象上的一对“ 点”,则 , , (将正确答案填在相应的横线上);
(2)关于 的函数 , 是常数)是“ 函数”吗?如果是,指出它有多少对“ 点”如果不是,请说明理由;
(3)若关于 的“ 函数” ,且 , , 是常数)经过坐标原点 ,且与直线 , ,且 , 是常数)交于 , , , 两点,当 , 满足 时,直线 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
如图,已知二次函数 的图象经过点 ,且与 轴交于原点及点 .
(1)求二次函数的表达式;
(2)求顶点 的坐标及直线 的表达式;
(3)判断 的形状,试说明理由;
(4)若点 为 上的动点,且 的半径为 ,一动点 从点 出发,以每秒2个单位长度的速度沿线段 匀速运动到点 ,再以每秒1个单位长度的速度沿线段 匀速运动到点 后停止运动,求点 的运动时间 的最小值.
阅读下面的材料:
如果函数 满足:对于自变量 取值范围内的任意 , ,
(1)若 ,都有 ,则称 是增函数;
(2)若 ,都有 ,则称 是减函数.
例题:证明函数 是增函数.
证明:任取 ,且 , .
则 .
且 , ,
, .
,即 , .
函数 是增函数.
根据以上材料解答下列问题:
(1)函数 , (1) , (2) , (3) , (4) ;
(2)猜想 是 函数(填“增”或“减” ,并证明你的猜想.
如图,抛物线 经过 , 两点,与 轴交于点 ,连接 .
(1)求该抛物线的函数表达式;
(2)如图2,直线 经过点 ,点 为直线 上的一个动点,且位于 轴的上方,点 为抛物线上的一个动点,当 轴时,作 ,交抛物线于点 (点 在点 的右侧),以 , 为邻边构造矩形 ,求该矩形周长的最小值;
(3)如图3,设抛物线的顶点为 ,在(2)的条件下,当矩形 的周长取最小值时,抛物线上是否存在点 ,使得 ?若存在,请求出点 的坐标;若不存在,请说明理由.
定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为"互异二次函数".如图,在正方形 中,点 ,点 ,则互异二次函数 与正方形 有交点时 的最大值和最小值分别是
A. |
4, |
B. |
, |
C. |
4,0 |
D. |
, |
已知关于 的二次函数 (实数 , 为常数).
(1)若二次函数的图象经过点 ,对称轴为 ,求此二次函数的表达式;
(2)若 ,当 时,二次函数的最小值为21,求 的值;
(3)记关于 的二次函数 ,若在(1)的条件下,当 时,总有 ,求实数 的最小值.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.