在平面直角坐标系 xOy 中,已知抛物线: y = a x 2 + bx + c 交 x 轴于 A ( - 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 3 2 ) .
(1)求抛物线的函数解析式;
(2)如图1,点 D 为第四象限抛物线上一点,连接 OD ,过点 B 作 BE ⊥ OD ,垂足为 E ,若 BE = 2 OE ,求点 D 的
坐标;
(3)如图2,点 M 为第四象限抛物线上一动点,连接 AM ,交 BC 于点 N ,连接 BM ,记 ΔBMN 的面积为 S 1 , ΔABN 的面积为 S 2 ,求 S 1 S 2 的最大值.
先化简,再求值:,其中
化简:
计算:
正值度尾文旦柚收成之际,在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达2000元;经精加工包装后销售,每吨利润为3000元.当地一家公司收购了600吨,该公司加工厂的生产能力是:如果对文旦柚进行粗加工,每天可加工50吨;如果进行精加工,每天可加工20吨,但每天两种方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批文旦柚全部销售或加工完毕,为此公司研制了三种加工方案. 方案一:将文旦柚全部进行粗加工; 方案二:尽可能多的对文旦柚进行精加工,没有来得及加工的文旦柚在市场上直接销售; 方案三:将部分文旦柚进行精加工,其余文旦柚进行粗加工,并恰好在15天完成, 如果你是公司经理,你会选择哪种方案,说明理由。