在平面直角坐标系 xOy 中,已知抛物线: y = a x 2 + bx + c 交 x 轴于 A ( - 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 3 2 ) .
(1)求抛物线的函数解析式;
(2)如图1,点 D 为第四象限抛物线上一点,连接 OD ,过点 B 作 BE ⊥ OD ,垂足为 E ,若 BE = 2 OE ,求点 D 的
坐标;
(3)如图2,点 M 为第四象限抛物线上一动点,连接 AM ,交 BC 于点 N ,连接 BM ,记 ΔBMN 的面积为 S 1 , ΔABN 的面积为 S 2 ,求 S 1 S 2 的最大值.
如图,直线y=x+b与双曲线y=都经过点A(2,3),直线y=x+b与x轴、y轴分别交于B、C两点. (1)求直线和双曲线的函数关系式; (2)求△AOB的面积.
先化简,再求值:(1﹣)÷,其中x=.
如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点. (1)当k=1时,求A、B两点的坐标; (2)当k=2时,求△AOB的面积; (3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=,求n的值.
已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图: ①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点; ②过M,N两点作直线MN交AB于点D,交AC于点E; ③将△ADE绕点E顺时针旋转180°,设点D的像为点F. (1)请在图中直线标出点F并连接CF; (2)求证:四边形BCFD是平行四边形; (3)当∠B为多少度时,四边形BCFD是菱形.
如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.