在平面直角坐标系 xOy 中,已知抛物线: y = a x 2 + bx + c 交 x 轴于 A ( - 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 3 2 ) .
(1)求抛物线的函数解析式;
(2)如图1,点 D 为第四象限抛物线上一点,连接 OD ,过点 B 作 BE ⊥ OD ,垂足为 E ,若 BE = 2 OE ,求点 D 的
坐标;
(3)如图2,点 M 为第四象限抛物线上一动点,连接 AM ,交 BC 于点 N ,连接 BM ,记 ΔBMN 的面积为 S 1 , ΔABN 的面积为 S 2 ,求 S 1 S 2 的最大值.
计算:(1) (2)
实践与探索:㈠小明在玩积木游戏时,把三个正方形积木摆成一定的形状,正视图如图①, 问题(2):若P的面积为36cm2,Q的面积为64 cm2,同时M的面积为100 cm2,则△DEF为_______三角形。㈡图形变化:Ⅰ.如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,你能找出这三个半圆的面积之间有什么关系吗?请说明理由。Ⅱ.如图③,如果直角三角形两直角边的长分别为3和4,以直角三角形的三边为直径作半圆,你能利用上面中的结论求出阴影部分的面积吗?
如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA。(1)试求∠DAE的度数。(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?试说明理由。
如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米。(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向也滑动了4米吗?
阅读理解题(本题共14分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C( , ),B→C( , ),C→ (+2, );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程; (3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置。(4)请你为这只甲壳虫设计一种从A处去往E处的路线。