如图,抛物线 y = x 2 + bx + c 与 x 轴交于 A 、 B 两点,且 A ( - 1 , 0 ) ,对称轴为直线 x = 2 .
(1)求该抛物线的函数达式;
(2)直线 l 过点 A 且在第一象限与抛物线交于点 C .当 ∠ CAB = 45 ° 时,求点 C 的坐标;
(3)点 D 在抛物线上与点 C 关于对称轴对称,点 P 是抛物线上一动点,令 P ( x P , y P ) ,当 1 ⩽ x P ⩽ a , 1 ⩽ a ⩽ 5 时,求 ΔPCD 面积的最大值(可含 a 表示).
完成下列各题 (1)计算:; (2)计算:; (3)因式分解:.
如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动(不与B、C重合),且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.
如图,将长方形纸片ABCD沿着EF折叠,使得点C与点A重合. (1)求证:AE=AF; (2)若AB=3,BC=9,试求CF的长; (3)在(2)的条件下,试求EF的长.
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE. (1)求证:△DEF是等腰三角形; (2)当∠A=40°时,求∠DEF的度数.
如图,AD平分∠BAC,∠BAC+∠ACD=180°,E在AD上,BE的延长线交CD于F,连CE,且∠1=∠2,试说明AB=AC.