已知抛物线: y = a x 2 - 3 ax - 4 a ( a > 0 ) 与 x 轴交点为 A , B ( A 在 B 的左侧),顶点为 D .
(1)求点 A , B 的坐标及抛物线的对称轴;
(2)若直线 y = - 3 2 x 与抛物线交于点 M , N ,且 M , N 关于原点对称,求抛物线的解析式;
(3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点 D ' 在直线 l : y = 7 8 上,设直线 l 与 y 轴的交点为 O ' ,原抛物线上的点 P 平移后的对应点为点 Q ,若 O ' P = O ' Q ,求点 P , Q 的坐标.
图(1)中,C点为线段AB上一点,△ACM,△CBN是等边三角形,AN与BM相等吗? 如图(2)C点为线段AB上一点,等边三角形ACM和等边三角形CBN在AB的异侧,此时AN与BM相等吗? 如图(3)C点为线段AB外一点,△ACM,△CBN是等边三角形,AN与BM相等吗?说明理由
“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题: (1)小明全家在旅游景点游玩了多少小时? (2)返程途中小汽车的速度每小时多少千米?请你求出来,并回答小明全家到家是什么时间? (3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)
已知,如图,AB=CD,AB∥CD,BE=FD,求证:△ABF≌△CDE
如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6; (1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少? (2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为
作图题(不写作法,保留作图痕迹;共8分) 小河的同旁有甲、乙两个村庄,现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题. (1)如果要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处? (2)如果要求建造水泵站使用建材最省,水泵站P又应建在河岸AB上的何处?