高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

下列叙述错误的是(    ).

A.若事件发生的概率为,则
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同
D.某事件发生的概率是随着试验次数的变化而变化的
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

实力相当的两人进行乒乓球比赛,采用5局3胜制,则恰好4局就结束比赛的概率是______________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:容易

某入伍新兵在打靶训练中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )

A.至多有一次中靶 B.2次都中靶
C.2次都不中靶 D.只有一次中靶
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

下列说法一定正确的是( )                                          

A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况
B.一枚硬币掷一次得到正面的概率是,那么掷两次一定会出现一次正面的情况
C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元
D.随机事件发生的概率与试验次数无关
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

下列四个命题:
①对立事件一定是互斥事件       
②若为两个事件,则
③若事件两两互斥,则
④若事件满足是对立事件.
其中错误命题的个数是(  )

A.0 B.1 C.2 D.3
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

从12个同类产品(其中有10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是

A.3个都是正品 B.至少有一个是次品
C.3个都是次品 D.至少有一个是正品
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:较易

(本小题满分10分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑
球.现从甲、乙两个盒内各任取2个球.
(1)求取出的4个球均为黑球的概率;
(2)求取出的4个球中恰有1个红球的概率;
(3)设为取出的4个球中红球的个数,求的分布列,并求其数学期望E().

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

袋子中装有编号为的3个黑球和编号为的2个红球,从中任意摸出2个球.
(Ⅰ)写出所有不同的结果;
(Ⅱ)求恰好摸出1个黑球和1个红球的概率;
(Ⅲ)求至少摸出1个红球的概率.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

一个篮球运动员投篮一次得分的概率为,得分的概率为,得分的概率为(投篮一次得分只能分、分、分或分),其中,已知他投篮一次得分的数学期望为,则的最大值为(     )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:较易

马老师从课本上抄录一个随机变量的概率分布律如下表
请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。据此,小牛给出了正确答案       

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:容易

某班在联欢会上举行一个抽奖活动,甲箱中有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖.
(Ⅰ)求每个活动参加者获奖的概率;
(Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:容易

从装有3个红球,3个白球的袋中随机取出2个球,设其中有个红球,则=
      

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:容易

在20件产品中,有15件一级品,5件二级品,从中任取3件,其中至少有
一件为二级品的概率是:                 (用数字作答)。

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:容易

下列叙述随机事件的频率与概率的关系中哪个是正确的(    )

A.频率就是概率
B.频率是客观存在的,与试验次数无关
C.概率是随机的,在试验前不能确定
D.随着试验次数的增加,频率一般会越来越接近概率
  • 更新:2020-03-18
  • 题型:选择题
  • 难度:容易

某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组得到的频率分布直方图如图所示
(1)分别求第3,4,5组的频率;
(2)若该校决定在第3,4,5 组中用分层抽样的方法抽取6名学生进入第二轮面试,
①已知学生甲和学生乙的成绩均在第3组,求学生甲和学生乙同时进入第二轮面试的概率;
②学校决定在这6名学生中随机抽取2名学生接受考官的面试,第4组中有名学生被考官面试,求的分布列和数学期望.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

高中数学随机事件试题