改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额 支付方式 |
不大于 元 |
大于 元 |
仅使用A |
27人 |
3人 |
仅使用B |
24人 |
1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于 元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于 元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于 元的人数有变化?说明理由.
从装有红球、黑球和白球的口袋中摸出一个球,若摸出的球是红球的概率是0.4,摸出的球是黑球的概率是0.25,那么摸出的球是白球或黑球的概率是( )
A.0.35 | B.0.65 | C.0.1 | D.0.6 |
下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经过10个涨停(每次涨停,即上涨10%)
就可以回到原来的净值;
③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部;数学平均分分别是a、b,则这两
个级部的数学平均分为
④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800
名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组
00l~016中随机抽到的学生编号是007.
其中真命题的个数是( )
A.0个 | B.1个 | C.2个 | D.3个 |
下列说法正确的是( )
A.某厂一批产品的次品率为,则任意抽取其中10件产品一定会发现一件次品 |
B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨 |
C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈 |
D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5 |
甲,乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )
A. | B. | C. | D. |
从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是( )
A.3个都是正品 | B.至少有1个次品 |
C.3个都是次品 | D.至少有1个正品 |
某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.
(1)求他乘火车或乘飞机去的概率;
(2)求他不乘飞机去的概率;
(3)若他去的概率为0.5,请问他有可能是乘何种交通工具去的?
某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16 .
|
第一批 |
第二批 |
第三批 |
女 |
196 |
x |
y |
男 |
204 |
156 |
z |
(1)求的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?
(3)已知,求第三批次中女教职工比男教职工多的概率.
某食品企业一个月内被消费者投诉的次数用ξ表示,椐统计,随机变量ξ的概率分布如下:
(Ⅰ)求a的值和ξ的数学期望;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
(本小题满分13分)2008年5月12日14时28分04秒,四川省阿坝藏族羌族自治州汶川县发生里氏8.0级地震,地震造成69227人遇难,374643人受伤,17923人失踪。重庆众多医务工作者和志愿者加入了抗灾救援行动。其中重庆三峡中心医院外科派出由5名骨干医生组成的救援小组,奔赴受灾第一线参与救援。现将这5名医生分别随机分配到受灾最严重的汶川县、北川县、绵竹三县中的某一个。
(1)求每个县至少分配到一名医生的概率。
(2)若将随机分配到汶川县的人数记为,求随机变量的分布列,期望和方差。
设,. 随机变量取值、、、、的概率均为0.2,随机变量取值、、、、的概率也为0.2.若记、分别为、的方差,则 ( )
A.> |
B.= |
C.< |
D.与的大小关系与、、、的取值有关 |
(本题14分)张老师居住在某城镇的A处,准备开车到学校B处上班。若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图。(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为)。(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望。
下图是淮北市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择6月1日至6月15日中的某一天到达该市,并停留2天.
(1)求此人到达当日空气重度污染的概率;
(2)若设是此人停留期间空气质量优良的天数,请分别求当x=0时,x=1时和x=3时的概率值。
(3)由图判断从哪天开始淮北市连续三天的空气质量指数方差最大?(结论不要求证明)
下列说法:①随机事件的概率是频率的稳定值,频率是概率的近似值;②一次试验中不同的基本事件不可能同时发生;③任意事件发生的概率总满足;其中正确的是 ;(写出所有正确说法的序号)