某班在联欢会上举行一个抽奖活动,甲箱中有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖.(Ⅰ)求每个活动参加者获奖的概率;(Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.
已知椭圆两焦点为和,P为椭圆上一点,且,求的面积.
已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.
给定两命题:已知 :;:.若是的必要而不充分条件,求实数的取值范围.
已知函数.(1)求函数的单调区间和极值;(2)若对任意的,恒有成立,求的取值范围;(3)证明:.
已知函数,(为常数).(1)若在处的切线过点(0,-5),求的值;(2)设函数的导函数为,若关于的方程有唯一解,求实数的取值范围;(3)令,若函数存在极值,且所有极值之和大于,求实数的取值范围.