如图,在矩形 中, , , 、 分别是边 、 上一点, ,将 沿 翻折得△ ,连接 ,当 时, 是以 为腰的等腰三角形.
在平面直角坐标系中, 为坐标原点,直线 与 轴交于点 ,与 轴交于点 ,二次函数 的图象过 、 两点,且与 轴交于另一点 ,点 为线段 上的一个动点,过点 作直线 平行于 轴交 于点 ,交二次函数 的图象于点 .
(1)求二次函数的表达式;
(2)当以 、 、 为顶点的三角形与 相似时,求线段 的长度;
(3)已知点 是 轴上的点,若点 、 关于直线 对称,求点 的坐标.
如图,在平面直角坐标系中, 为坐标原点,点 为 轴正半轴上的一个动点,过点 的直线与二次函数 的图象交于 、 两点,且 , 为 的中点,设点 的坐标为 , ,写出 关于 的函数表达式为: .
设 , 分别是函数 , 图象上的点,当 时,总有 恒成立,则称函数 , 在 上是"逼近函数", 为"逼近区间".则下列结论:
①函数 , 在 上是"逼近函数";
②函数 , 在 上是"逼近函数";
③ 是函数 , 的"逼近区间";
④ 是函数 , 的"逼近区间".
其中,正确的有
A. |
②③ |
B. |
①④ |
C. |
①③ |
D. |
②④ |
在 中, , , ,点 是 所在平面内一点,则 取得最小值时,下列结论正确的是
A. |
点 是 三边垂直平分线的交点 |
B. |
点 是 三条内角平分线的交点 |
C. |
点 是 三条高的交点 |
D. |
点 是 三条中线的交点 |
已知正方形 与正方形 ,正方形 绕点 旋转一周.
(1)如图①,连接 、 ,求 的值;
(2)当正方形 旋转至图②位置时,连接 、 ,分别取 、 的中点 、 ,连接 、试探究: 与 的关系,并说明理由;
(3)连接 、 ,分别取 、 的中点 、 ,连接 , ,请直接写出线段 扫过的面积.
如图,在 中, , ,点 、 分别在 、 上, , , 交 于点 ,则 面积的最大值是 .
如图①,甲、乙都是高为6米的长方体容器,容器甲的底面 是正方形,容器乙的底面 是矩形.如图②,已知正方形 与矩形 满足如下条件:正方形 外切于一个半径为5米的圆 ,矩形 内接于这个圆 , .
(1)求容器甲、乙的容积分别为多少立方米?
(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米 小时,4小时后,把容器甲的注水流量增加 立方米 小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米 小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为 时,我们把容器甲的水位高度记为 ,容器乙的水位高度记为 ,设 ,已知 (米 关于注水时间 (小时)的函数图象如图③所示,其中 平行于横轴,根据图中所给信息,解决下列问题:
①求 的值;
②求图③中线段 所在直线的解析式.
如图,二次函数 是实数,且 的图象与 轴交于 、 两点(点 在点 的左侧),其对称轴与 轴交于点 .已知点 位于第一象限,且在对称轴上, ,点 在 轴的正半轴上, ,连接 并延长交 轴于点 ,连接 .
(1)求 、 、 三点的坐标(用数字或含 的式子表示);
(2)已知点 在抛物线的对称轴上,当 的周长的最小值等于 时,求 的值.
如图,射线 , 互相垂直, ,点 位于射线 的上方,且在线段 的垂直平分线 上,连接 , .把线段 绕点 按逆时针方向旋转得到对应线段 ,若点 恰好落在射线 上,则点 到射线 的距离 .
已知二次函数 的图象经过 , 两点.
(1)求 的值;
(2)当 时,该函数的图象的顶点的纵坐标的最小值是 1 .
(3)设 是该函数的图象与 轴的一个公共点.当 时,结合函数的图象,直接写出 的取值范围.
如图,将 绕点 逆时针旋转到 的位置,使点 落在 上, 与 交于点 .若 , , ,则 的长为 .
如图,抛物线 与 轴交于点 、 ,与 轴交于点 ,已知 .
(1)求 的值和直线 对应的函数表达式;
(2) 为抛物线上一点,若 ,请直接写出点 的坐标;
(3) 为抛物线上一点,若 ,求点 的坐标.