初中数学

如图,在矩形 ABCD 中, AB = 3 AD = 4 E F 分别是边 BC CD 上一点, EF AE ,将 ΔECF 沿 EF 翻折得△ EC ' F ,连接 AC ' ,当 BE =   时, ΔAEC ' 是以 AE 为腰的等腰三角形.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

在平面直角坐标系中, O 为坐标原点,直线 y = - x + 3 x 轴交于点 B ,与 y 轴交于点 C ,二次函数 y = a x 2 + 2 x + c 的图象过 B C 两点,且与 x 轴交于另一点 A ,点 M 为线段 OB 上的一个动点,过点 M 作直线 l 平行于 y 轴交 BC 于点 F ,交二次函数 y = a x 2 + 2 x + c 的图象于点 E

(1)求二次函数的表达式;

(2)当以 C E F 为顶点的三角形与 ΔABC 相似时,求线段 EF 的长度;

(3)已知点 N y 轴上的点,若点 N F 关于直线 EC 对称,求点 N 的坐标.

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, O 为坐标原点,点 C y 轴正半轴上的一个动点,过点 C 的直线与二次函数 y = x 2 的图象交于 A B 两点,且 CB = 3 AC P CB 的中点,设点 P 的坐标为 P ( x y ) ( x > 0 ) ,写出 y 关于 x 的函数表达式为:   

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

P ( x , y 1 ) Q ( x , y 2 ) 分别是函数 C 1 C 2 图象上的点,当 a x b 时,总有 - 1 y 1 - y 2 1 恒成立,则称函数 C 1 C 2 a x b 上是"逼近函数", a x b 为"逼近区间".则下列结论:

①函数 y = x - 5 y = 3 x + 2 1 x 2 上是"逼近函数";

②函数 y = x - 5 y = x 2 - 4 x 3 x 4 上是"逼近函数";

0 x 1 是函数 y = x 2 - 1 y = 2 x 2 - x 的"逼近区间";

2 x 3 是函数 y = x - 5 y = x 2 - 4 x 的"逼近区间".

其中,正确的有 (    )

A.

②③

B.

①④

C.

①③

D.

②④

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, A = 90 ° AB = 6 AC = 8 ,点 P ΔABC 所在平面内一点,则 P A 2 + P B 2 + P C 2 取得最小值时,下列结论正确的是 (    )

A.

P ΔABC 三边垂直平分线的交点

B.

P ΔABC 三条内角平分线的交点

C.

P ΔABC 三条高的交点

D.

P ΔABC 三条中线的交点

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 BC = 5 ,点 D E 分别在 BC AC 上, CD = 2 BD CE = 2 AE BE AD 于点 F ,则 ΔAFE 面积的最大值是   

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图①,甲、乙都是高为6米的长方体容器,容器甲的底面 ABCD 是正方形,容器乙的底面 EFGH 是矩形.如图②,已知正方形 ABCD 与矩形 EFGH 满足如下条件:正方形 ABCD 外切于一个半径为5米的圆 O ,矩形 EFGH 内接于这个圆 O EF = 2 EH

(1)求容器甲、乙的容积分别为多少立方米?

(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米 / 小时,4小时后,把容器甲的注水流量增加 a 立方米 / 小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米 / 小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为 t 时,我们把容器甲的水位高度记为 h ,容器乙的水位高度记为 h ,设 h - h = h ,已知 h (米 ) 关于注水时间 t (小时)的函数图象如图③所示,其中 MN 平行于横轴,根据图中所给信息,解决下列问题:

①求 a 的值;

②求图③中线段 PN 所在直线的解析式.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 - ( m + 1 ) x + m ( m 是实数,且 - 1 < m < 0 ) 的图象与 x 轴交于 A B 两点(点 A 在点 B 的左侧),其对称轴与 x 轴交于点 C .已知点 D 位于第一象限,且在对称轴上, OD BD ,点 E x 轴的正半轴上, OC = EC ,连接 ED 并延长交 y 轴于点 F ,连接 AF

(1)求 A B C 三点的坐标(用数字或含 m 的式子表示);

(2)已知点 Q 在抛物线的对称轴上,当 ΔAFQ 的周长的最小值等于 12 5 时,求 m 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,射线 OM ON 互相垂直, OA = 8 ,点 B 位于射线 OM 的上方,且在线段 OA 的垂直平分线 l 上,连接 AB AB = 5 .把线段 AB 绕点 O 按逆时针方向旋转得到对应线段 A ' B ' ,若点 B ' 恰好落在射线 ON 上,则点 A ' 到射线 ON 的距离 d =   

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c 的图象经过 ( - 2 , 1 ) ( 2 , - 3 ) 两点.

(1)求 b 的值;

(2)当 c > - 1 时,该函数的图象的顶点的纵坐标的最小值是  1 

(3)设 ( m , 0 ) 是该函数的图象与 x 轴的一个公共点.当 - 1 < m < 3 时,结合函数的图象,直接写出 a 的取值范围.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,将 ABCD 绕点 A 逆时针旋转到 A ' B ' C ' D ' 的位置,使点 B ' 落在 BC 上, B ' C ' CD 交于点 E .若 AB = 3 BC = 4 BB ' = 1 ,则 CE 的长为   

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = m x 2 + ( m 2 + 3 ) x - ( 6 m + 9 ) x 轴交于点 A B ,与 y 轴交于点 C ,已知 B ( 3 , 0 )

(1)求 m 的值和直线 BC 对应的函数表达式;

(2) P 为抛物线上一点,若 S ΔPBC = S ΔABC ,请直接写出点 P 的坐标;

(3) Q 为抛物线上一点,若 ACQ = 45 ° ,求点 Q 的坐标.

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图, BE ΔABC 的中线,点 F BE 上,延长 AF BC 于点 D .若 BF = 3 FE ,则 BD DC =   

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 内接于 O ,线段 MN 在对角线 BD 上运动,若 O 的面积为 2 π MN = 1 ,则 ΔAMN 周长的最小值是 (    )

A.

3

B.

4

C.

5

D.

6

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

初中数学试题