初中数学

如图, AOB = 60 ° ,点 P 为射线 OA 上的一动点.过点 P PC OB 于点 C .点 D AOB 内,且满足 APD = OPC DP + PC = 10

(1)当 PC = 6 时,求点 D OB 的距离;

(2)在射线 OA 上是否存在一定点 M ,使得 MD = MC ?若存在,请用直尺(不带刻度)和圆规作出点 M (不必写作法,但要保留作图痕迹),并求 OM 的长;若不存在,说明理由.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

A 商场从某厂以75元 / 件的价格采购一种商品,售价是100元 / 件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给 A 商场.商场没有售完的,可以以65元 / 件退还给厂家.设 A 商场售出该商品 x 件,问: A 商场对这种商品的销量至少要多少时,他们的获利能达到9600元?

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AD ΔABC 的角平分线,点 O 在边 AB 上.过点 A D 的圆的圆心 O 在边 AB 上,它与边 AB 交于另一点 E

(1)试判断 BC 与圆 O 的位置关系,并说明理由;

(2)若 AC = 6 sin B = 3 5 ,求 AD 的长.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某校4月份八年级的生物实验考查,有 A B C D 四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.

(1)小丽参加实验 A 考查的概率是  

(2)用列表或画树状图的方法求小明、小丽都参加实验 A 考查的概率.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).

请根据以上信息,解答下列问题:

(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);

(2)在采集到的数据中,近两周平均每位教师家访  次;

(3)若该市有12000名教师,则近两周家访不少于3次的教师约有  人.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,已知五边形 ABCDE 是正五边形,连接 AC AD .证明: ACD = ADC

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

对给定的一张矩形纸片 ABCD 进行如下操作:先沿 CE 折叠,使点 B 落在 CD 边上(如图① ) ,再沿 CH 折叠,这时发现点 E 恰好与点 D 重合(如图② )

(1)根据以上操作和发现,求 CD AD 的值;

(2)将该矩形纸片展开.

①如图③,折叠该矩形纸片,使点 C 与点 H 重合,折痕与 AB 相交于点 P ,再将该矩形纸片展开.求证: HPC = 90 °

②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 P 点,要求只有一条折痕,且点 P 在折痕上,请简要说明折叠方法.(不需说明理由)

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

平面直角坐标系 xOy 中,二次函数 y = x 2 2 mx + m 2 + 2 m + 2 的图象与 x 轴有两个交点.

(1)当 m = 2 时,求二次函数的图象与 x 轴交点的坐标;

(2)过点 P ( 0 , m 1 ) 作直线 l y 轴,二次函数图象的顶点 A 在直线 l x 轴之间(不包含点 A 在直线 l 上),求 m 的范围;

(3)在(2)的条件下,设二次函数图象的对称轴与直线 l 相交于点 B ,求 ΔABO 的面积最大时 m 的值.

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数 = L : ( H H 1 ) ,其中 L 为楼间水平距离, H 为南侧楼房高度, H 1 为北侧楼房底层窗台至地面高度.

如图②,山坡 EF 朝北, EF 长为 15 m ,坡度为 i = 1 : 0 . 75 ,山坡顶部平地 EM 上有一高为 22 . 5 m 的楼房 AB ,底部 A E 点的距离为 4 m

(1)求山坡 EF 的水平宽度 FH

(2)欲在 AB 楼正北侧山脚的平地 FN 上建一楼房 CD ,已知该楼底层窗台 P 处至地面 C 处的高度为 0 . 9 m ,要使该楼的日照间距系数不低于1.25,底部 C F 处至少多远?

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, ABC 的平分线交 O 于点 D DE BC 于点 E

(1)试判断 DE O 的位置关系,并说明理由;

(2)过点 D DF AB 于点 F ,若 BE = 3 3 DF = 3 ,求图中阴影部分的面积.

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

为了改善生态环境,某乡村计划植树4000棵.由于志愿者的支援,实际工作效率提高了 20 % ,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, A = D = 90 ° AC = DB AC DB 相交于点 O .求证: OB = OC

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从 A B 两个景点中任意选择一个游玩,下午从 C D E 三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点 B C 的概率.

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的 40 % .如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.

根据以上信息,回答下列问题

(1)直接写出图中 a m 的值;

(2)分别求网购与视频软件的人均利润;

(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = ( x a ) ( x 3 ) ( 0 < a < 3 ) 的图象与 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 D ,过其顶点 C 作直线 CP x 轴,垂足为点 P ,连接 AD BC

(1)求点 A B D 的坐标;

(2)若 ΔAOD ΔBPC 相似,求 a 的值;

(3)点 D O C B 能否在同一个圆上?若能,求出 a 的值;若不能,请说明理由.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学解答题