如图, ∠ AOB = 60 ° ,点 P 为射线 OA 上的一动点.过点 P 作 PC ⊥ OB 于点 C .点 D 在 ∠ AOB 内,且满足 ∠ APD = ∠ OPC , DP + PC = 10 .
(1)当 PC = 6 时,求点 D 到 OB 的距离;
(2)在射线 OA 上是否存在一定点 M ,使得 MD = MC ?若存在,请用直尺(不带刻度)和圆规作出点 M (不必写作法,但要保留作图痕迹),并求 OM 的长;若不存在,说明理由.
如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E。求证: (1)DE是⊙O的切线; (2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长。
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.
二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根. (2)写出不等式的解集. (3)写出随的增大而减小的自变量的取值范围. (4)若方程有两个不相等的实数根,求的取值范围.
已知:如图,OA、OB为⊙O的半径, C、D分别为OA、OB的中点,求证:AD=BC.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为. ①把向上平移5个单位后得到对应的,画出,并写出的坐标; ②以原点为对称中心,画出与关于原点对称的,并写出点的坐标. ③以原点O为旋转中心,画出把顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.