初中数学

如图,半圆O的直径DE=12cm,Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,直径DE始终在直线BC上.设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧,OC=8cm.

(1)外
当t=8(s)时,试判断点C与半圆O所在的圆的位置关系.

(2)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切.
(3)在(2)的条件下,如果半圆O与△ABC三边围成的区域有重叠部分,求重叠部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD为∠BAC的平分线,点E在BC的延长线上,且∠EAC=∠B,以DE为直径的半圆交AD于点F,交AE于点M.

(1)判断AF与DF的数量关系,并说明理由.
(2)只用无刻度的直尺画出△ADE的边DE上的高AH(不要求写做法,保留作图痕迹) .
(3)若EF=8,DF=6,求DH的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知圆心O到直线m的距离为d,⊙O的半径为r
(1)当d、r是方程x2-9x+20=0的两根时,判断直线m与⊙O的位置关系?
(2)当d、r是方程 x2-4x+p=0的两根时,直线m与⊙O相切,求p的值

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(1,﹣2).直线OM是一次函数y=x的图像.让⊙A沿y轴正方向以每秒1个单位长度移动,移动时间为t.
(1)填空
①直线OM与x轴所夹的锐角度数为         °;
②当t=                       时,⊙A与坐标轴有两个公共点;
(2)当t>3时,求出运动过程中⊙A与直线OM相切时的t的值;
(3)运动过程中,当⊙A与直线OM相交所得的弦长为1时,求t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.

(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,⊙轴交于C、D两点,圆心的坐标为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0).

(1)求切线BC的解析式;
(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点的坐标;
(3)向左移动⊙(圆心始终保持在轴上),与直线BC交于E、F,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知L1⊥L2,⊙O与L1,L2都相切,⊙O的半径为1cm,矩形ABCD的边AD、AB分别与直线L1,L2重合,∠BCA=600,若⊙O与矩形ABCD沿L1同时向右移动,⊙O的移动速度为2cm/s,矩形ABCD的移动速度为3cm/s,设移动时间为t(s)
(1)如图①,连接OA、AC,则∠OAC的度数为    °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,求当对角线AC所在直线与圆O第二次相切 时t的值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知△ABC的一个外角∠CAM=120°,AD是∠CAM的平分线,且AD的反向延长线与△ABC的外接圆交于点F,连接FB、FC,且FC与AB交于E,

(1)判断△FBC的形状,并说明理由;   
(2)请探索线段AB、AC与AF之间满足条件的关系式并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.

(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=2,点D是AB的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F.

(1)求劣弧PC的长;(结果保留π)
(2)求阴影部分的面积.(结果保留π).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

每位同学都能感受到日出时美丽的景色.右图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(12分) 已知⊙O的半径为2,∠AOB=120°。
(1)点O到弦AB的距离为          
(2)若点P为优弧AB上一动点(点P不与A、B重合),设∠ABP=α,将△ABP沿BP折叠,得到A点的对称点为A';
①若∠α=30°,试判断点A'与⊙O的位置关系;
②若BA'与⊙O相切于B点,求BP的长;
③若线段BA'与优弧APB只有一个公共点,直接写出α的取值范围.
     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题12分).如图1,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.

(1)求⊙M的直径的长.
(2)如图2,将△ONM沿ON翻转180°至△ONG,求证△OMG是等边三角形.
(3)求直线ON的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.

(1)请写出该圆弧所在圆的圆心O的坐标   
(2)⊙O的半径为         (结果保留根号);
(3)求的长(结果保留π).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.

(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;
(Ⅱ)如图②,若∠CAB=60°,求BD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆幂定理解答题