初中数学

如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F

(1)求证:AD是⊙O的切线;
(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.

(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4,PC=8,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=时,求tanB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.

(1)求证:FE⊥AB;
(2)当EF=6,时,求DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.

(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线⊥线段于点,点上,且,点是直线上的动点,作点关于直线的对称点,直线与直线相交于点,连接
(1)如图1,若点与点重合,则∠=    °,线段的比值为    
(2)如图2,若点与点不重合,设过三点的圆与直线相交于,连接。求证:①=;②=2
(3)如图3,,则满足条件的点都在一个确定的圆上,在以下两小题中选做一题:
①如果你能发现这个确定圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB
②如果你不能发现这个确定圆的圆心和半径,那么请取几个特殊位置的点,如点在直线上、点与点重合等进行探究,求这个圆的半径

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.

(1)求证:BD平分∠ABC;
(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;
(3)如果AB=10,cos∠ABC=,求AD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.

(1)若∠ABC=60°.求证:AP是⊙O的切线;
(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.

(1)求证:∠DBA=∠ABC;
(2)如果BD=1,tan∠BAD=,求⊙O的半径.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知点D在双曲线)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.

(1)写出点D的坐标并求出抛物线的解析式;
(2)证明∠ACO=∠OBC;
(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.

(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=2,AE=6,求EC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①、②,在平面直角坐标系中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与轴于O,B两点,OC为弦,∠AOC=60°,P是轴上的一动点,连结CP.

(1)求的度数;
(2)如图①,当与⊙A相切时,求的长;
(3)如图②,当点在直径上时,的延长线与⊙A相交于点,问为何值时,是等腰三角形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.

(1)求证:PA是⊙O的切线;
(2)若,且OC=4,求PA的长和tanD的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点的直径的延长线上,点上,

(1)求证:CD是的切线;
(2)若的半径为3,求CD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

问题探究:
(一)新知学习:
圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).
(二)问题解决:
已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.
(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;
(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;
(3)若直径AB与CD相交成120°角.
①当点P运动到的中点P1时(如图二),求MN的长;
②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.
(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.

(1)求证:PA为⊙O的切线;
(2)若OB=5,OP=,求AC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆幂定理解答题