如图①、②,在平面直角坐标系中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与轴于O,B两点,OC为弦,∠AOC=60°,P是轴上的一动点,连结CP.(1)求的度数;(2)如图①,当与⊙A相切时,求的长;(3)如图②,当点在直径上时,的延长线与⊙A相交于点,问为何值时,是等腰三角形?
如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F. (1)函数y=ax2-2ax+a+3(a>0)的最小值为;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是; (2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明); (3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.
甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点掉头,掉头时间不计,速度分别为5m/s和4m/s. (1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200); (2)根据(1)中所画图象,完成下列表格:
(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围; ②求甲、乙第6此相遇时t的值.
如图,已知直线y=ax+b与双曲线交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于点P(x0,0),与y轴交于点C. (1)若A,B两点坐标分别为(1,3),(3,y2).求点P的坐标; (2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标; (3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).
(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形 B.菱形 C.矩形 D.正方形 (2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D. ①求证:四边形AFF'D是菱形; ②求四边形AFF'D的两条对角线的长.
某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图. 学生家长对孩子使用手机的态度情况统计图 根据以上信息回答下列问题: (1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为; (2)把条形统计图补充完整; (3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?