在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(-1,0),点C的坐标为(3,0),点M是△ABC外接圆的圆心求经过A、B、C三点的抛物线的解析式及点M的坐标;设抛物线的顶点为D,Q是直线CD上一动点,请直接写出以A、D、M、Q为顶点的四边形为平行四边形时的点Q的坐标;在抛物线上找求点P,使△PAB的面积与△MCD的面积之比为2:3,并求出点P的坐标.
如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=. (1)求AE的长;(2)求ΔCEF的周长和面积.
在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个、黄球1个、红球1个,摸出一个球记下颜色后放回,再摸出一个球,记下相应颜色. (1)请用列表法或画树状图法表示出两次所得颜色的所有可能情形; (2)求两次摸到的球同色的概率.
(1)化简:;(2)解方程:.
计算:(1)(-2)2+(2013-)0-;(2).
如图,在一次暖气管道的铺设工作中,工程是由A点出发沿正西方向进行的,在A点的南偏西60°的方向上有一所学校,学校占地是以B点为中心方圆100米的圆形,当工程进行了200米时到达C处,此时B在C的南偏西30°的方向上,请根据题中所提供的信息计算、分析一下,工程继续进行下去,是否会穿过学校?