已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,1.7)
为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有_________家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.
如图,在平面直角坐标系中放置一顶点为A,B,O的直角三角形,将此三角形绕原点O顺时针旋转90°得到△A1B1O.抛物线y=-x2+x+2经过A,B,B1三点.(1)求直线A1B1的解析式; (2)设点C是在抛物线上第一象限内的一点,△COB1的面积是△ABO面积的2倍,求C点坐标; (3)线段AB上是否存在一点P,使以点P,A1,B为顶点的三角形与△ABO相似?若存在,请求出的值;若不存在,请说明理由.
校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据: =1.41;=1.73)(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于点D.(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹); (2)判断直线BC与⊙O的位置关系,并说明理由; (3)若(1)中的⊙O与边AB的另一个交点3为,E求弧,AB=6DE的弧,BD=2长(结果保留根号和π)