已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
定义:如图1,射线OP与原点为圆心,半径为1的圆交于点P,记∠xOP=α,则点P的横坐标叫做角的余弦值,记作;点P的纵坐标叫做角的正弦值,记作;纵坐标与横坐标的比值叫做角的正切值,记作. 如:当时,点P的横坐标为=,纵坐标为=即P(,). 又如:在图2中,(为锐角), PN轴,QM轴,易证△OQM≌△OPN, 则Q点的纵坐标等于点P的横坐标,得= . 解决以下四个问题: (1)当时,求点P的坐标; (2)当是锐角时,则+1(用>或<填空),= ; (3)求证:(为锐角); (4)求证:tan=(为锐角);
某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t后甲、乙两遥控车与B处的距离分别为,,则,与t的函数关系如图,试根据图象解决下列问题: (1)填空:乙的速度=米/分; (2)写出与t的函数关系式; (3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q. (1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由. (2)若cosB=,BP=6,AP=1,求QC的长.
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件. (1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式; (2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)