如图,半圆O的直径DE=12cm,Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,直径DE始终在直线BC上.设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧,OC=8cm.(1)外当t=8(s)时,试判断点C与半圆O所在的圆的位置关系.外(2)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切.(3)在(2)的条件下,如果半圆O与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F. (1)如图①,当时,求的值; (2)如图②当DE平分∠CDB时,求证:AF=OA; (3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E. (1)求证:PA是⊙O的切线; (2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长; (3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.
某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品. (1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式; (2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品? (3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
如图,一根长米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′. (1)求OB的长; (2)当AA′=1米时,求BB′的长.
甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘. (1)试用列表或画树形图的方法,求甲获胜的概率; (2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.