如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(1,﹣2).直线OM是一次函数y=x的图像.让⊙A沿y轴正方向以每秒1个单位长度移动,移动时间为t. (1)填空 ①直线OM与x轴所夹的锐角度数为 °; ②当t= 时,⊙A与坐标轴有两个公共点; (2)当t>3时,求出运动过程中⊙A与直线OM相切时的t的值; (3)运动过程中,当⊙A与直线OM相交所得的弦长为1时,求t的值.
已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于的二次函数y= mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.
已知:二次函数.(1)求出该二次函数图象的对称轴和顶点坐标;(2)求出该抛物线与x轴的交点坐标;(3)当x取何值时,y<0.
如图,已知二次函数y=x2-2x+3的图象的顶点为A,且与y轴交于点C.(1)求点A与点C的坐标;(2)若将此函数的图象沿x轴向右平移1个单位,再沿y轴向下平移3个单位,请直接写出平移后图象所对应的函数关系式及点C的对应点的坐标;(3)若A(m,y1),B(m+1,y2)两点都在此函数的图象上,试比较y1与y2的大小.
如图,抛物线y=-+5x+n经过点A(1,0),与y轴交于点B(1)求抛物线的解析式;(2)P是y轴上一点,且△PAB是以AB为腰的等腰三角形,求P点坐标。
如图,等腰△OAB在直角坐标系中的位置如图,点A的坐标为(,3),点B的坐标为(-6,0). (1)若△OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标; (2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数 的图像上,求a的值; (3)若△OAB绕点O按逆时针方向旋转α度(0<α<900). ①当α=30°时点B恰好落在反比例函数 的图象上,求k的值; ②问点A、B能否同时落在①中的反比例函数的图象上,若能,求出α的值;若不能,请说明理由.