如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30º,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
如图,在菱形中,对角线与相交于点,,,点从点出发,沿以每秒2个单位长度的速度向终点运动,当点不与点重合时,过点作于点,作交于点,过点作交(或的延长线)于点,得到矩形,设点运动的时间为秒
(1)求线段的长(用含的代数式表示);
(2)求点与点重合时的值;
(3)设矩形与菱形重叠部分图形的面积与平方单位,求与之间的函数关系式;
(4)矩形的对角线与相交于点,当时,的值为 ;当时,的值为 .
如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).
已知 是 的直径,点 是 延长线上一点, , 是 的弦, .
(1)求证:直线 是 的切线;
(2)若 ,垂足为 , 的半径为4,求 的长.
如图,将边长为6的正方形ABCO放置在直角坐标系中,使点A在x轴负半轴上,点C在y轴正半轴上。点M(t,0)在x轴上运动,过A作直线MC的垂线交y轴于点N.
(1)当t = 2时,tan∠NAO = ;
(2)在直角坐标系中,取定点P(3,8),则在点M运动过程中,当以M、N、C、P为顶点的四边形是梯形时,点M的坐标为 .
如图,点在数轴上对应的数为26,以原点为圆心,为半径作优弧,使点在右下方,且,在优弧上任取一点,且能过作直线交数轴于点,设在数轴上对应的数为,连接.
(1)若优弧上一段的长为,求的度数及的值;
(2)求的最小值,并指出此时直线与所在圆的位置关系;
(3)若线段的长为12.5,直接写出这时的值.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,已知 是 的直径, 是 所对的圆周角, .
(1)求 的度数;
(2)过点 作 ,垂足为 , 的延长线交 于点 .若 ,求 的长.
如图,已知点 是以 为直径的半圆上一点, 是 延长线上一点,过点 作 的垂线交 的延长线于点 ,连结 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
数学小组研究如下问题:长春市的纬度约为北纬 ,求北纬 纬线的长度,小组成员查阅了相关资料,得到三条信息:
(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;
(2)如图, 是经过南、北极的圆,地球半径 约为 .弦 ,过点 作 于点 ,连接 .若 ,则以 为半径的圆的周长是北纬 纬线的长度;
(3)参考数据: 取3, , .
小组成员给出了如下解答,请你补充完整:
解:因为 , ,
所以 (填推理依据),
因为 ,所以 ,
在 中, .
(填" "或" " .
所以北纬 的纬线长 .
(填相应的三角形函数值)
(结果取整数).
如图,在 中, , , , ,点 是边 上一点,连接 ,将 沿 翻折得到 .
(1)若 , ,且 ,求 的长;
(2)连接 ,若四边形 是平行四边形,求 与 之间的关系式.
如图1,在平面直角坐标系中,直线 分别与 轴、 轴交于点 , , ,等边 的顶点 与原点 重合, 边落在 轴正半轴上,点 恰好落在线段 上,将等边 从图1的位置沿 轴正方向以每秒1个单位长度的速度平移,边 , 分别与线段 交于点 , (如图2所示),设 平移的时间为 .
(1)等边 的边长为 ;
(2)在运动过程中,当 时, 垂直平分 ;
(3)若在 开始平移的同时.点 从 的顶点 出发.以每秒2个单位长度的速度沿折线 运动.当点 运动到 时即停止运动. 也随之停止平移.
①当点 在线段 上运动时,若 与 相似.求 的值;
②当点 在线段 上运动时,设 ,求 与 的函数关系式,并求出 的最大值及此时点 的坐标.
在 中, ,点 是 的中点,点 是 上的一个动点(点 不与点 , , 重合).过点 ,点 作直线 的垂线,垂足分别为点 和点 ,连接 , .
(1)如图1,请直接写出线段 与 的数量关系;
(2)如图2,当 时,请判断线段 与 之间的数量关系和位置关系,并说明理由
(3)若 , ,当 为等腰三角形时,请直接写出线段 的长.
如图,抛物线 经过点 ,与 轴的负半轴交于点 ,与 轴交于点 ,且 ,抛物线的顶点为点 .
(1)求这条抛物线的表达式;
(2)联结 、 、 、 ,求四边形 的面积;
(3)如果点 在 轴的正半轴上,且 ,求点 的坐标.
如图,为⊙O的直径,是延长线上一点,切⊙O于点,是⊙O的弦,,垂足为.
(1)求证:;
(2)过点作交⊙O于点,交于点,连接.若,,求的长.