初中数学

如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?

(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在菱形 ABCD 中, AB = 6 5 tan ABC = 2 ,点 E 从点 D 出发,以每秒1个单位长度的速度沿着射线 DA 的方向匀速运动,设运动时间为 t (秒 ) ,将线段 CE 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CF

(1)求证: BE = DF

(2)当 t =          秒时, DF 的长度有最小值,最小值等于            

(3)如图2,连接 BD EF BD EC EF 于点 P Q ,当 t 为何值时, ΔEPQ 是直角三角形?

(4)如图3,将线段 CD 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CG .在点 E 的运动过程中,当它的对应点 F 位于直线 AD 上方时,直接写出点 F 到直线 AD 的距离 y 关于时间 t 的函数表达式.

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(本题10分)如图,从城市A到B城市的公路需经过城市C,图中AC=100千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两城市间修建一条笔直的公路.

(1)求改直的公路AB的长;
(2)问公路改直后比原来缩短了多少千米?
(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.

(一猜测探究

中,是平面内任意一点,将线段绕点按顺时针方向旋转与相等的角度,得到线段,连接

(1)如图1,若是线段上的任意一点,请直接写出的数量关系是  的数量关系是  

(2)如图2,点延长线上点,若内部射线上任意一点,连接,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.

(二拓展应用

如图3,在△中,上的任意点,连接,将绕点按顺时针方向旋转,得到线段,连接.求线段长度的最小值.

来源:2019年山东省济南市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

(本题6+6分)
(1)计算:
(2)先化简,再求值:,其中x是方程的根.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O 1 = 2 ,延长 BC 到点 E ,使得 CE = AB ,连接 ED

(1)求证: BD = ED

(2)若 AB = 4 BC = 6 ABC = 60 ° ,求 tan DCB 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

(1)如图1,菱形的顶点在菱形的边上,且,请直接写出的结果(不必写计算过程)

(2)将图1中的菱形绕点旋转一定角度,如图2,求

(3)把图2中的菱形都换成矩形,如图3,且,此时的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.

来源:2019年山东省德州市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, ACD AD ^ 所对的圆周角, ACD = 30 °

(1)求 DAB 的度数;

(2)过点 D DE AB ,垂足为 E DE 的延长线交 O 于点 F .若 AB = 4 ,求 DF 的长.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知点 C 是以 AB 为直径的半圆上一点, D AB 延长线上一点,过点 D BD 的垂线交 AC 的延长线于点 E ,连结 CD ,且 CD = ED

(1)求证: CD O 的切线;

(2)若 tan DCE = 2 BD = 1 ,求 O 的半径.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

数学小组研究如下问题:长春市的纬度约为北纬 44 ° ,求北纬 44 ° 纬线的长度,小组成员查阅了相关资料,得到三条信息:

(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;

(2)如图, O 是经过南、北极的圆,地球半径 OA 约为 6400 km .弦 BC / / OA ,过点 O OK BC 于点 K ,连接 OB .若 AOB = 44 ° ,则以 BK 为半径的圆的周长是北纬 44 ° 纬线的长度;

(3)参考数据: π 取3, sin 44 ° = 0 . 69 cos 44 ° = 0 . 72

小组成员给出了如下解答,请你补充完整:

解:因为 BC / / OA AOB = 44 °

所以 B = AOB = 44 ° (    ) (填推理依据),

因为 OK BC ,所以 BKO = 90 °

Rt Δ BOK 中, OB = OA = 6400

BK = OB ×   (填" sin B "或" cos B " )

所以北纬 44 ° 的纬线长 C = 2 π BK

= 2 × 3 × 6400 ×   (填相应的三角形函数值)

   ( km ) (结果取整数).

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线 MN 分别与 x 轴、 y 轴交于点 M ( 6 , 0 ) N ( 0 2 3 ) ,等边 ΔABC 的顶点 B 与原点 O 重合, BC 边落在 x 轴正半轴上,点 A 恰好落在线段 MN 上,将等边 ΔABC 从图1的位置沿 x 轴正方向以每秒1个单位长度的速度平移,边 AB AC 分别与线段 MN 交于点 E F (如图2所示),设 ΔABC 平移的时间为 t ( s )

(1)等边 ΔABC 的边长为  

(2)在运动过程中,当 t =   时, MN 垂直平分 AB

(3)若在 ΔABC 开始平移的同时.点 P ΔABC 的顶点 B 出发.以每秒2个单位长度的速度沿折线 BA AC 运动.当点 P 运动到 C 时即停止运动. ΔABC 也随之停止平移.

①当点 P 在线段 BA 上运动时,若 ΔPEF ΔMNO 相似.求 t 的值;

②当点 P 在线段 AC 上运动时,设 S ΔPEF = S ,求 S t 的函数关系式,并求出 S 的最大值及此时点 P 的坐标.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = BC ,点 O AC 的中点,点 P AC 上的一个动点(点 P 不与点 A O C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE OF

(1)如图1,请直接写出线段 OE OF 的数量关系;

(2)如图2,当 ABC = 90 ° 时,请判断线段 OE OF 之间的数量关系和位置关系,并说明理由

(3)若 | CF AE | = 2 EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 5 ( a 0 ) 经过点 A ( 4 , - 5 ) ,与 x 轴的负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 5 OB ,抛物线的顶点为点 D

(1)求这条抛物线的表达式;

(2)联结 AB BC CD DA ,求四边形 ABCD 的面积;

(3)如果点 E y 轴的正半轴上,且 BEO = ABC ,求点 E 的坐标.

来源:2016年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题