初中数学

如图所示,在矩形 ABCD 中,点 E 在线段 CD 上,点 F 在线段 AB 的延长线上,连接 EF 交线段 BC 于点 G ,连接 BD ,若 DE = BF = 2

(1)求证:四边形 BFED 是平行四边形;

(2)若 tan ABD = 2 3 ,求线段 BG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, D O 上一点, E BD ̂ 的中点,点 C BA 的延长线上,且 CDA = B

(1)求证: CD O 的切线;

(2)若 DE = 2 BDE = 30 ° ,求 CD 的长.

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图1,在 ABC 中, AB 6 cm AC 5 cm CAB 60 ° ,点DAB的中点,线段 AC 上有一动点E,连接DE,作DA关于直线DE的对称图形,得到 DF ,过点F FG AB 于点G.设AE两点间的距离为 xcm F G 两点间的距离为 ycm

小军根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.

下面是小军的探究过程,请补充完整.

(1)列表:如表的已知数据是根据AE两点间的距离x进行取点、画图、测量,分别得到了xy的几组对应值:

x/cm

0

0.51

1.03

1.41

1.50

1.75

2.20

2.68

3.00

3.61

4.10

4.74

5.00

y/cm

0

0.94

1.91

2.49

  

2.84

3.00

2.84

2.60

2.00

1.50

0.90

0.68

请你通过计算补全表格;

(2)描点、连线:在平面直角坐标系 xOy 中(如图2),描出表中各组数值所对应的点 x y ,并画出y关于x的图象;

(3)探究性质:随着x值的不断增大,y的值是怎样变化的?  

(4)解决问题:当 AE + FG 2 时,FG的长度大约是  cm(保留两位小数).

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, C D O 上两点,且在直径 AB 两侧,连结 CD AB 于点 E G AC ̂ 上一点, ADC = G

(1)求证: 1 = 2

(2)点 C 关于 DG 的对称点为 F ,连结 CF .当点 F 落在直径 AB 上时, CF = 10 tan 1 = 2 5 ,求 O 的半径.

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知在 ΔABC 中, AC = BC = m D AB 边上的一点,将 B 沿着过点 D 的直线折叠,使点 B 落在 AC 边的点 P 处(不与点 A C 重合),折痕交 BC 边于点 E

(1)特例感知 如图1,若 C = 60 ° D AB 的中点,求证: AP = 1 2 AC

(2)变式求异 如图2,若 C = 90 ° m = 6 2 AD = 7 ,过点 D DH AC 于点 H ,求 DH AP 的长;

(3)化归探究 如图3,若 m = 10 AB = 12 ,且当 AD = a 时,存在两次不同的折叠,使点 B 落在 AC 边上两个不同的位置,请直接写出 a 的取值范围.

来源:2020年浙江省湖州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB O 的直径, C O 上一点, P BC ̂ 的中点,过点 P AC 的垂线,交 AC 的延长线于点 D ,连接 OP

(1)求证: DP O 的切线;

(2)若 AC = 5 sin APC = 5 13 ,求 AP 的长.

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, OAB = 90 ° B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O B 重合).

(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;

(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t

①如图②,若折叠后△ O ' PQ ΔOAB 重叠部分为四边形, O ' P O ' Q 分别与边 AB 相交于点 C D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;

②若折叠后△ O ' PQ ΔOAB 重叠部分的面积为 S ,当 1 t 3 时,求 S 的取值范围(直接写出结果即可).

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, BAC = 75 ° ABC = 45 ° .连接 AO 并延长,交 O 于点 D ,连接 BD .过点 C O 的切线,与 BA 的延长线相交于点 E

(1)求证: AD / / EC

(2)若 AB = 12 ,求线段 EC 的长.

来源:2020年陕西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, B = 90 ° ,点 D AC 上一点,以 CD 为直径的 O AB 于点 E ,连接 CE ,且 CE 平分 ACB

(1)求证: AE O 的切线;

(2)连接 DE ,若 A = 30 ° ,求 BE DE

来源:2020年宁夏中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

(1)如图1,将矩形 ABCD 折叠,使 BC 落在对角线 BD 上,折痕为 BE ,点 C 落在点 C ' 处,若 ADB = 46 ° ,则 DBE 的度数为   °

(2)小明手中有一张矩形纸片 ABCD AB = 4 AD = 9

【画一画】

如图2,点 E 在这张矩形纸片的边 AD 上,将纸片折叠,使 AB 落在 CE 所在直线上,折痕设为 MN (点 M N 分别在边 AD BC 上),利用直尺和圆规画出折痕 MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

【算一算】

如图3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A B 分别落在点 A ' B ' 处,若 AG = 7 3 ,求 B ' D 的长;

【验一验】

如图4,点 K 在这张矩形纸片的边 AD 上, DK = 3 ,将纸片折叠,使 AB 落在 CK 所在直线上,折痕为 HI ,点 A B 分别落在点 A ' B ' 处,小明认为 B ' I 所在直线恰好经过点 D ,他的判断是否正确,请说明理由.

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, DB = DA ,点 F AB 的中点,连接 DF 并延长,交 CB 的延长线于点 E ,连接 AE

(1)求证:四边形 AEBD 是菱形;

(2)若 DC = 10 tan DCB = 3 ,求菱形 AEBD 的面积.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

【发现】如图①,已知等边 ΔABC ,将直角三角板的 60 ° 角顶点 D 任意放在 BC 边上(点 D 不与点 B C 重合),使两边分别交线段 AB AC 于点 E F

(1)若 AB = 6 AE = 4 BD = 2 ,则 CF =   

(2)求证: ΔEBD ΔDCF

【思考】若将图①中的三角板的顶点 D BC 边上移动,保持三角板与边 AB AC 的两个交点 E F 都存在,连接 EF ,如图②所示,问:点 D 是否存在某一位置,使 ED 平分 BEF FD 平分 CFE ?若存在,求出 BD BC 的值;若不存在,请说明理由.

【探索】如图③,在等腰 ΔABC 中, AB = AC ,点 O BC 边的中点,将三角形透明纸板的一个顶点放在点 O 处(其中 MON = B ) ,使两条边分别交边 AB AC 于点 E F (点 E F 均不与 ΔABC 的顶点重合),连接 EF .设 B = α ,则 ΔAEF ΔABC 的周长之比为  (用含 α 的表达式表示).

来源:2018年江苏省盐城市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = m BC = n ,将此矩形绕点 B 顺时针方向旋转 θ ( 0 ° < θ < 90 ° ) 得到矩形 A 1 B C 1 D 1 ,点 A 1 在边 CD 上.

(1)若 m = 2 n = 1 ,求在旋转过程中,点 D 到点 D 1 所经过路径的长度;

(2)将矩形 A 1 B C 1 D 1 继续绕点 B 顺时针方向旋转得到矩形 A 2 B C 2 D 2 ,点 D 2 BC 的延长线上,设边 A 2 B CD 交于点 E ,若 A 1 E EC = 6 1 ,求 n m 的值.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O AB = 17 CD = 10 A = 90 ° cos B = 3 5 ,求 AD 的长.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题