如图, C , D 为 ⊙ O 上两点,且在直径 AB 两侧,连结 CD 交 AB 于点 E , G 是 AC ̂ 上一点, ∠ ADC = ∠ G .
(1)求证: ∠ 1 = ∠ 2 .
(2)点 C 关于 DG 的对称点为 F ,连结 CF .当点 F 落在直径 AB 上时, CF = 10 , tan ∠ 1 = 2 5 ,求 ⊙ O 的半径.
如图,已知一张长方形纸片ABCD,AB∥CD ,AD=BC=1,AB=CD=5.在长方形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK. (1)请你动手操作,判断△MNK的形状一定是 ; (2)问△MNK的面积能否小于?试说明理由; (3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,并求最大值.
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F.请解答下列问题:(1)连结BD,试说明∠BDE=∠CDF;(2)求证:BE=FC;(2)若AE=4,FC=3,求EF长.
某航船以20海里/时的速度向正北方向航行,在A处看灯塔Q在航船北偏东45°处,半小时后航行到B处,此时灯塔Q与航船的距离最短.(1)请你在图中画出点B的位置;(2)求灯塔Q到A处的距离.(精确到0.1海里)
将大小不同的两个正方形按如图所示那样拼接起来,连结BD、BF、DF,已知正方形ABCD的边长为,正方形CEFG的边长为,且<. (1)填空:BE×DG = (用含、的代数式表示); (2)当正方形ABCD的边长保持不变,而正方形CEFG的边长不断增大时,△BDF的面积会发生改变吗?请说明理由.
如图所示,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求: (1)到公园两个出入口A、C的距离相等; (2)到公园两边围墙AB、AD的距离相等. 请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)