如图,已知在 中, ,以 为直径的 与 交于点 ,点 是 的中点,连接 , .
(1)若 ,求 ;
(2)求证: 是 的切线.
如图, 中, , , .
(1)请画出将 向右平移8个单位长度后的△ ;
(2)求出 的余弦值;
(3)以 为位似中心,将△ 缩小为原来的 ,得到△ ,请在 轴右侧画出△ .
如图,在平行四边形 中, ,垂足为点 ,以 为直径的 与边 相切于点 ,连接 交 于点 ,连接 .
(1)求证: .
(2)若 ,求 的值.
问题呈现
如图1,在边长为1的正方形网格中,连接格点 , 和 , , 和 相交于点 ,求 的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 , ,可得 ,则 ,连接 ,那么 就变换到 中.
问题解决
(1)直接写出图1中 的值为 2 ;
(2)如图2,在边长为1的正方形网格中, 与 相交于点 ,求 的值;
思维拓展
(3)如图3, , ,点 在 上,且 ,延长 到 ,使 ,连接 交 的延长线于点 ,用上述方法构造网格求 的度数.
如图,已知矩形 中,点 , 分别是 , 上的点, ,且 .
(1)求证: ;
(2)若 ,求 .
如图,线段 是 的直径,弦 于点 ,点 是 上任意一点, , .
(1)求 的半径 的长度;
(2)求 ;
(3)直线 交直线 于点 ,直线 交 于点 ,连接 交 于点 ,求 的值.
如图,点 是正方形 边 上一点,连接 ,作 于点 , 于点 ,连接 .
(1)求证: ;
(2)已知 ,四边形 的面积为24,求 的正弦值.
如图,已知AB是⊙O的直径,⊙O经过 的直角边DC上的点F,交AC边于点E,点F是弧EB的中点, ,连接AF.
(1)求证:直线CD是⊙O切线.
(2)若 , ,求 的值.
已知点 为正方形 的边 上一点,连接 ,过点 作 ,垂足为 ,交 于点 .
(1)求证: ;
(2)若 为 的中点,求 .
如图, 为圆 的直径, 为圆 上一点, 为 延长线一点,且 , 于点 .
(1)求证:直线 为圆 的切线;
(2)设 与圆 交于点 , 的延长线与 交于点 ,已知 , , ,求 的值.
如图,四边形 内接于 , , ,垂足为 ,点 在 的延长线上,且 ,连接 、 .
(1)求证: ;
(2)若 , ,求 的值.
如图,在正方形中,,点在边上,连接,作于点,于点,连接、,设,,.
(1)求证:;
(2)求证:;
(3)若点从点沿边运动至点停止,求点,所经过的路径与边围成的图形的面积.
如图1, 是 的直径,直线 与 相切于点 ,直线 与 相切于点 ,点 (异于点 在 上,点 在 上,且 ,延长 与 相交于点 ,连接 并延长交 于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)如图2,连接 并延长与 分别相交于点 、 ,连接 .若 , ,求 .