初中数学

Rt Δ ABC 中, ACB = 90 ° ,点 D 与点 B AC 同侧, DAC > BAC ,且 DA = DC ,过点 B BE / / DA DC 于点 E M AB 的中点,连接 MD ME

(1)如图1,当 ADC = 90 ° 时,线段 MD ME 的数量关系是         

(2)如图2,当 ADC = 60 ° 时,试探究线段 MD ME 的数量关系,并证明你的结论;

(3)如图3,当 ADC = α 时,求 ME MD 的值.

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,经过点 C 的切线交 AB 的延长线于点 E AD EC EC 的延长线于点 D AD O F FM AB H ,分别交 O AC M N ,连接 MB BC

(1)求证: AC 平分 DAE

(2)若 cos M = 4 5 BE = 1

①求 O 的半径;

②求 FN 的长.

来源:2018年湖北省荆门市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 的一组对边 AD BC 的延长线交于点 E

(1)如图1,若 ABC = ADC = 90 ° ,求证: ED EA = EC EB

(2)如图2,若 ABC = 120 ° cos ADC = 3 5 CD = 5 AB = 12 ΔCDE 的面积为6,求四边形 ABCD 的面积;

(3)如图3,另一组对边 AB DC 的延长线相交于点 F .若 cos ABC = cos ADC = 3 5 CD = 5 CF = ED = n ,直接写出 AD 的长(用含 n 的式子表示)

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

(探索发现)

如图①,是一张直角三角形纸片, B = 90 ° ,小明想从中剪出一个以 B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线 DE EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为       

(拓展应用)

如图②,在 ΔABC 中, BC = a BC 边上的高 AD = h ,矩形 PQMN 的顶点 P N 分别在边 AB AC 上,顶点 Q M 在边 BC 上,则矩形 PQMN 面积的最大值为      .(用含 a h 的代数式表示)

(灵活应用)

如图③,有一块“缺角矩形” ABCDE AB = 32 BC = 40 AE = 20 CD = 16 ,小明从中剪出了一个面积最大的矩形( B 为所剪出矩形的内角),求该矩形的面积.

(实际应用)

如图④,现有一块四边形的木板余料 ABCD ,经测量 AB = 50 cm BC = 108 cm CD = 60 cm ,且 tan B = tan C = 4 3 ,木匠徐师傅从这块余料中裁出了顶点 M N 在边 BC 上且面积最大的矩形 PQMN ,求该矩形的面积.

来源:2017年江苏省盐城市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,以原点 O 为圆心,3为半径的圆与 x 轴分别交于 A B 两点(点 B 在点 A 的右边), P 是半径 OB 上一点,过 P 且垂直于 AB 的直线与 O 分别交于 C D 两点(点 C 在点 D 的上方),直线 AC DB 交于点 E .若 AC : CE = 1 : 2

(1)求点 P 的坐标;

(2)求过点 A 和点 E ,且顶点在直线 CD 上的抛物线的函数表达式.

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, A 为反比例函数 y = k x (其中 x > 0 ) 图象上的一点,在 x 轴正半轴上有一点 B OB = 4 .连接 OA AB ,且 OA = AB = 2 10

(1)求 k 的值;

(2)过点 B BC OB ,交反比例函数 y = k x (其中 x > 0 ) 的图象于点 C ,连接 OC AB 于点 D ,求 AD DB 的值.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, P 是平面直角坐标系中第四象限内一点,过点 P PA x 轴于点 A ,以 AP 为斜边在右侧作等腰 Rt Δ APQ ,已知直角顶点 Q 的纵坐标为 - 2 ,连接 OQ AP B BQ = 2 OB

(1)求点 P 的坐标;

(2)连接 OP ,求 ΔOPQ 的面积与 ΔOAQ 的面积之比.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O BC O 的直径, AC BD 交于点 E P CB 延长线上一点,连接 PA ,且 PAB = ADB

(1)求证: PA O 的切线;

(2)若 AB = 6 tan ADB = 3 4 ,求 PB 长;

(3)在(2)的条件下,若 AD = CD ,求 ΔCDE 的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, P 是平面直角坐标系中第四象限内一点,过点 P PA x 轴于点 A ,以 AP 为斜边在右侧作等腰 Rt Δ APQ ,已知直角顶点 Q 的纵坐标为 - 2 ,连接 OQ AP B BQ = 2 OB

(1)求点 P 的坐标;

(2)连接 OP ,求 ΔOPQ 的面积与 ΔOAQ 的面积之比.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC > AB BAD 的平分线 AF BD BC 分别交于点 E F ,点 O BD 的中点,直线 OK / / AF ,交 AD 于点 K ,交 BC 于点 G

(1)求证:① ΔDOK ΔBOG ;② AB + AK = BG

(2)若 KD = KG BC = 4 - 2

①求 KD 的长度;

②如图2,点 P 是线段 KD 上的动点(不与点 D K 重合), PM / / DG KG 于点 M PN / / KG DG 于点 N ,设 PD = m ,当 S ΔPMN = 2 4 时,求 m 的值.

来源:2016年海南省中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中:

①探究三条线段 AB CE CF 之间的数量关系,并说明理由;

②若 CE = 4 CF = 2 ,求 DN 的长.

来源:2017年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔABC 中, C = 90 ° BAC 的平分线 D BC 于点 D ,过点 D DE AD AB 于点 E ,以 AE 为直径作 O

(1)求证: BC O 的切线;

(2)若 AC = 3 BC = 4 ,求 BE 的长.

来源:2017年湖北省荆门市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究

如图1,在四边形 ABCD 中, AB = AD BAD = 60 ° ABC = ADC = 90 ° ,点 E F 分别在线段 BC CD 上, EAF = 30 ° ,连接 EF

(1)如图2,将 ΔABE 绕点 A 逆时针旋转 60 ° 后得到△ A ' B ' E ' ( A ' B ' AD 重合),请直接写出 E ' AF =      度,线段 BE EF FD 之间的数量关系为       

(2)如图3,当点 E F 分别在线段 BC CD 的延长线上时,其他条件不变,请探究线段 BE EF FD 之间的数量关系,并说明理由.

(二)拓展延伸

如图4,在等边 ΔABC 中, E F 是边 BC 上的两点, EAF = 30 ° BE = 1 ,将 ΔABE 绕点 A 逆时针旋转 60 ° 得到△ A ' B ' E ' ( A ' B ' AC 重合),连接 EE ' AF EE ' 交于点 N ,过点 A AM BC 于点 M ,连接 MN ,求线段 MN 的长度.

来源:2016年山东省济南市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图(1),已知点 G 在正方形 ABCD 的对角线 AC 上, GE BC ,垂足为点 E GF CD ,垂足为点 F

(1)证明与推断:

①求证:四边形 CEGF 是正方形;

②推断: AG BE 的值为       

(2)探究与证明:

将正方形 CEGF 绕点 C 顺时针方向旋转 α ( 0 ° < α < 45 ° ) ,如图(2)所示,试探究线段 AG BE 之间的数量关系,并说明理由;

(3)拓展与运用:

正方形 CEGF 在旋转过程中,当 B E F 三点在一条直线上时,如图(3)所示,延长 CG AD 于点 H .若 AG = 6 GH = 2 2 ,则 BC =       

来源:2018年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质计算题