在 中, ,点 与点 在 同侧, ,且 ,过点 作 交 于点 , 为 的中点,连接 , .
(1)如图1,当 时,线段 与 的数量关系是 ;
(2)如图2,当 时,试探究线段 与 的数量关系,并证明你的结论;
(3)如图3,当 时,求 的值.
如图, 为 的直径, 为 上一点,经过点 的切线交 的延长线于点 , 交 的延长线于点 , 交 于 , 于 ,分别交 、 于 、 ,连接 , .
(1)求证: 平分 ;
(2)若 , ,
①求 的半径;
②求 的长.
已知四边形 的一组对边 、 的延长线交于点 .
(1)如图1,若 ,求证: ;
(2)如图2,若 , , , , 的面积为6,求四边形 的面积;
(3)如图3,另一组对边 、 的延长线相交于点 .若 , , ,直接写出 的长(用含 的式子表示)
(探索发现)
如图①,是一张直角三角形纸片, ,小明想从中剪出一个以 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线 、 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .
(拓展应用)
如图②,在 中, , 边上的高 ,矩形 的顶点 、 分别在边 、 上,顶点 、 在边 上,则矩形 面积的最大值为 .(用含 , 的代数式表示)
(灵活应用)
如图③,有一块“缺角矩形” , , , , ,小明从中剪出了一个面积最大的矩形( 为所剪出矩形的内角),求该矩形的面积.
(实际应用)
如图④,现有一块四边形的木板余料 ,经测量 , , ,且 ,木匠徐师傅从这块余料中裁出了顶点 、 在边 上且面积最大的矩形 ,求该矩形的面积.
如图,以原点 为圆心,3为半径的圆与 轴分别交于 , 两点(点 在点 的右边), 是半径 上一点,过 且垂直于 的直线与 分别交于 , 两点(点 在点 的上方),直线 , 交于点 .若 .
(1)求点 的坐标;
(2)求过点 和点 ,且顶点在直线 上的抛物线的函数表达式.
如图, 为反比例函数 (其中 图象上的一点,在 轴正半轴上有一点 , .连接 , ,且 .
(1)求 的值;
(2)过点 作 ,交反比例函数 (其中 的图象于点 ,连接 交 于点 ,求 的值.
如图, 是平面直角坐标系中第四象限内一点,过点 作 轴于点 ,以 为斜边在右侧作等腰 ,已知直角顶点 的纵坐标为 ,连接 交 于 , .
(1)求点 的坐标;
(2)连接 ,求 的面积与 的面积之比.
如图,四边形 内接于 , 为 的直径, 与 交于点 , 为 延长线上一点,连接 ,且 .
(1)求证: 为 的切线;
(2)若 , ,求 长;
(3)在(2)的条件下,若 ,求 的面积.
如图,在平面直角坐标系中,已知点 ,以原点 为圆心、3为半径作圆. 从点 出发,以每秒1个单位的速度沿 轴正半轴运动,运动时间为 .连接 ,将 沿 翻折,得到 .求 有一边所在直线与 相切时 的值.
如图, 是平面直角坐标系中第四象限内一点,过点 作 轴于点 ,以 为斜边在右侧作等腰 ,已知直角顶点 的纵坐标为 ,连接 交 于 , .
(1)求点 的坐标;
(2)连接 ,求 的面积与 的面积之比.
如图1,在矩形 中, , 的平分线 与 、 分别交于点 、 ,点 是 的中点,直线 ,交 于点 ,交 于点 .
(1)求证:① ;② ;
(2)若 , .
①求 的长度;
②如图2,点 是线段 上的动点(不与点 、 重合), 交 于点 , 交 于点 ,设 ,当 时,求 的值.
如图,在 中, , 是中线, ,一个以点 为顶点的 角绕点 旋转,使角的两边分别与 、 的延长线相交,交点分别为点 , , 与 交于点 , 与 交于点 .
(1)如图1,若 ,求证: ;
(2)如图2,在 绕点 旋转的过程中:
①探究三条线段 , , 之间的数量关系,并说明理由;
②若 , ,求 的长.
已知:如图,在 中, , 的平分线 交 于点 ,过点 作 交 于点 ,以 为直径作 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.
(一)尝试探究
如图1,在四边形 中, , , ,点 、 分别在线段 、 上, ,连接 .
(1)如图2,将 绕点 逆时针旋转 后得到△ 与 重合),请直接写出 度,线段 、 、 之间的数量关系为 .
(2)如图3,当点 、 分别在线段 、 的延长线上时,其他条件不变,请探究线段 、 、 之间的数量关系,并说明理由.
(二)拓展延伸
如图4,在等边 中, 、 是边 上的两点, , ,将 绕点 逆时针旋转 得到△ 与 重合),连接 , 与 交于点 ,过点 作 于点 ,连接 ,求线段 的长度.