初中数学

如图,在正方形网格中,每个小正方形的边长均为1,的顶点都在网格线的交点上.设的周长为的周长为,则的值等于   

来源:2020年江苏省南通市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在和△中,分别是上一点,

(1)当时,求证

证明的途径可以用下面的框图表示,请填写其中的空格.

(2)当时,判断与△是否相似,并说明理由.

来源:2020年江苏省南京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,把与轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线的顶点为,交轴于点(点在点左侧),交轴于点.抛物线是“共根抛物线”,其顶点为

(1)若抛物线经过点,求对应的函数表达式;

(2)当的值最大时,求点的坐标;

(3)设点是抛物线上的一个动点,且位于其对称轴的右侧.若相似,求其“共根抛物线” 的顶点的坐标.

来源:2020年江苏省连云港市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,半径为2的轴的正半轴交于点,点上一动点,点为弦的中点,直线轴、轴分别交于点,则面积的最小值为  

来源:2020年江苏省连云港市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初步尝试

(1)如图①,在三角形纸片中,,将折叠,使点与点重合,折痕为,则的数量关系为     

思考说理

(2)如图②,在三角形纸片中,,将折叠,使点与点重合,折痕为,求的值;

拓展延伸

(3)如图③,在三角形纸片中,,将沿过顶点的直线折叠,使点落在边上的点处,折痕为

①求线段的长;

②若点是边的中点,点为线段上的一个动点,将沿折叠得到△,点的对应点为点交于点,求的取值范围.

来源:2020年江苏省淮安市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

的直径,点上一点,连接,直线过点,满足

(1)如图①,求证:直线的切线;

(2)如图②,点在线段上,过点于点,直线于点,连接并延长交直线于点,连接,且,若的半径为1,,求的值.

来源:2020年湖南省株洲市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

在矩形中,边上一点,把沿翻折,使点恰好落在边上的点

(1)求证:

(2)若,求的长;

(3)若,记,求的值.

来源:2020年湖南省长沙市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,点在以为直径的半圆上运动(点不与重合),平分,交于点,交于点

(1)  

(2)若,则  

来源:2020年湖南省长沙市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, AB = 6 BC = 8 ,动点 P Q 分别从 C 点, A 点同时以每秒1个单位长度的速度出发,且分别在边 CA AB 上沿 C A A B 的方向运动,当点 Q 运动到点 B 时, P Q 两点同时停止运动.设点 P 运动的时间为 t ( s ) ,连接 PQ ,过点 P PE PQ PE 与边 BC 相交于点 E ,连接 QE

(1)如图2,当 t = 5 s 时,延长 EP 交边 AD 于点 F .求证: AF = CE

(2)在(1)的条件下,试探究线段 AQ QE CE 三者之间的等量关系,并加以证明;

(3)如图3,当 t > 9 4 s 时,延长 EP 交边 AD 于点 F ,连接 FQ ,若 FQ 平分 AFP ,求 AF CE 的值.

来源:2020年湖南省岳阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图, AB 为半圆 O 的直径, M C 是半圆上的三等分点, AB = 8 BD 与半圆 O 相切于点 B .点 P AM ̂ 上一动点(不与点 A M 重合),直线 PC BD 于点 D BE OC 于点 E ,延长 BE PC 于点 F ,则下列结论正确的是   .(写出所有正确结论的序号)

PB = PD ;② BC ̂ 的长为 4 3 π ;③ DBE = 45 ° ;④ ΔBCF ΔPFB ;⑤ CF · CP 为定值.

来源:2020年湖南省岳阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AB O 的直径, BD O 相切于点 B BD AC 的延长线于点 D E BD 的中点,连接 CE

(1)求证: CE O 的切线.

(2)已知 BD = 3 5 CD = 5 ,求 O E 两点之间的距离.

来源:2020年湖南省永州市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, EF / / BC AE EB = 2 3 ,四边形 BCFE 的面积为21,则 ΔABC 的面积是 (    )

A.

91 3

B.

25

C.

35

D.

63

来源:2020年湖南省永州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E DC 上的一点, ΔABE 是等边三角形, AC BE 于点 F ,则下列结论不成立的是 (    )

A.

DAE = 30 °

B.

BAC = 45 °

C.

EF FB = 1 2

D.

AD AB = 3 2

来源:2020年湖南省益阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC O 的切线, BC O 于点 E

(1)若 D AC 的中点,证明: DE O 的切线;

(2)若 CA = 6 CE = 3 . 6 ,求 O 的半径 OA 的长.

来源:2020年湖南省湘西州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.

(1)特例感知:如图(一 ) ,已知边长为2的等边 ΔABC 的重心为点 O ,求 ΔOBC ΔABC 的面积.

(2)性质探究:如图(二 ) ,已知 ΔABC 的重心为点 O ,请判断 OD OA S ΔOBC S ΔABC 是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.

(3)性质应用:如图(三 ) ,在正方形 ABCD 中,点 E CD 的中点,连接 BE 交对角线 AC 于点 M

①若正方形 ABCD 的边长为4,求 EM 的长度;

②若 S ΔCME = 1 ,求正方形 ABCD 的面积.

来源:2020年湖南省湘潭市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题