阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.
(1)特例感知:如图(一 ) ,已知边长为2的等边 ΔABC 的重心为点 O ,求 ΔOBC 与 ΔABC 的面积.
(2)性质探究:如图(二 ) ,已知 ΔABC 的重心为点 O ,请判断 OD OA 、 S ΔOBC S ΔABC 是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.
(3)性质应用:如图(三 ) ,在正方形 ABCD 中,点 E 是 CD 的中点,连接 BE 交对角线 AC 于点 M .
①若正方形 ABCD 的边长为4,求 EM 的长度;
②若 S ΔCME = 1 ,求正方形 ABCD 的面积.
某酒家为了了解市民对去年销量较好的五仁馅、豆沙馅、红枣馅、双黄馅四种不同口味月饼(以下分别用A,B,C,D表示)的喜爱情况,在节前对人口总数8000人的某社区市民进行了抽样情况调查,绘制成如图的两幅统计图(尚不完整),请根据信息回答:(1)将两幅不完整的图补充完整,并估计该社区爱吃D型月饼的人数;(2)若有外型完全相同的A,B,C,D月饼各一个,小王吃了两个,求她第二个吃到的月饼恰好是C型的概率.
如图,矩形对角线AC,BD相交于点O,∠AOB=60°,AB=4cm,求矩形对角线AC和BC的长.
解分式方程:.
如图,正三角形ABC内接于⊙O,P是上的一点,且,交于E,点F是延长线上的点,,,.(1)求证≌;(2)求证;(3)求和的长.
已知关于x的二次函数的图象与x轴从左到右交于A,B两点,且这两点关于原点对称.(1)求k的值;(2)在(1)的条件下,若反比例函数的图象与二次函数的图象从左到右交于Q,R,S三点,且点Q的坐标为(-1,-1),点R(,),S(,)中的纵坐标,分别是一元二次方程的解,求四边形AQBS的面积;(3)在(1),(2)的条件下,在x轴下方是否存在二次函数图象上的点P使得=2,若存在,求出点P的坐标;若不存在,请说明理由.